纳米二氧化硅和纳米粘土粉增强椰壳纤维生物复合材料管的优化设计

A. Khalkhali, S. Daghighi
{"title":"纳米二氧化硅和纳米粘土粉增强椰壳纤维生物复合材料管的优化设计","authors":"A. Khalkhali, S. Daghighi","doi":"10.5829/ije.2017.30.12c.11","DOIUrl":null,"url":null,"abstract":"Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.","PeriodicalId":14066,"journal":{"name":"International Journal of Engineering - Transactions C: Aspects","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder\",\"authors\":\"A. Khalkhali, S. Daghighi\",\"doi\":\"10.5829/ije.2017.30.12c.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.\",\"PeriodicalId\":14066,\"journal\":{\"name\":\"International Journal of Engineering - Transactions C: Aspects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering - Transactions C: Aspects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ije.2017.30.12c.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering - Transactions C: Aspects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2017.30.12c.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

由于具有显著的环保优势,生物复合材料近年来受到越来越多的关注。在三点弯曲试验中,对纳米粉末增强帽型椰壳纤维生物复合材料管的强度进行了试验评价。采用手铺法和田口设计的实验方法制备。分析了碱处理过程中纤维负荷、纳米粉体类型、纳米粉体质量百分比和NaOH质量百分比等参数对纳米粉体性能的影响。采用田口L8正交阵列进行优化。此外,进行方差分析(ANOVA)以确定参数的显著性。本研究还在ABAQUS软件中建立有限元模型,与实验结果进行对比,得到验证的有限元模型。实验结果与数值模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder
Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different parameters including fiber loading, type of nano powder and its weight percentage and also weight percentage of NaOH in alkali treatment were analyzed. Optimization was also performed using Taguchi L8 orthogonal array. Moreover, analysis of variance (ANOVA) was conducted to determine the significance of the parameters. In this study, finite element model was also created in ABAQUS software to compare with the results obtained from the experiments to achieve validated finite element model. There was a good agreement between the results from experiments and those obtained in numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
29
期刊最新文献
Algorithm of Predicting Heart Attack with using Sparse Coder Predicting Service Life of Polyethylene Pipes under Crack Expansion using "Random Forest" Method Experimental Study to Evaluate Antisymmetric Reinforced Concrete Deep Beams with Openings under Concentrated Loading Using Strut and Tie Model Study on Application of Arps Decline Curves for Gas Production Forecasting in Senegal Design and Performance Analysis of 6H-SiC Metal-Semiconductor Field-Effect Transistor with Undoped and Recessed Area under Gate in 10nm Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1