Siyi Zhang, Ping Bai, Dan Lei, Yingxia Liang, Sherri Zhen, Grisilda Bakiasi, Hao Pang, Se Hoon Choi, Changning Wang, Rudolph E Tanzi, Can Zhang
{"title":"在细胞模型中,表观遗传调控蛋白 BRD4 的降解和抑制会加剧阿尔茨海默病相关的神经病理学。","authors":"Siyi Zhang, Ping Bai, Dan Lei, Yingxia Liang, Sherri Zhen, Grisilda Bakiasi, Hao Pang, Se Hoon Choi, Changning Wang, Rudolph E Tanzi, Can Zhang","doi":"10.1016/j.jbc.2022.101794","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.</p>","PeriodicalId":39551,"journal":{"name":"Annals of the ICRP","volume":"14 1","pages":"101794"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958546/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer's disease-related neuropathology in cell models.\",\"authors\":\"Siyi Zhang, Ping Bai, Dan Lei, Yingxia Liang, Sherri Zhen, Grisilda Bakiasi, Hao Pang, Se Hoon Choi, Changning Wang, Rudolph E Tanzi, Can Zhang\",\"doi\":\"10.1016/j.jbc.2022.101794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.</p>\",\"PeriodicalId\":39551,\"journal\":{\"name\":\"Annals of the ICRP\",\"volume\":\"14 1\",\"pages\":\"101794\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the ICRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2022.101794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the ICRP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbc.2022.101794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Degradation and inhibition of epigenetic regulatory protein BRD4 exacerbate Alzheimer's disease-related neuropathology in cell models.
Epigenetic regulation plays substantial roles in human pathophysiology, which provides opportunities for intervention in human disorders through the targeting of epigenetic pathways. Recently, emerging evidence from preclinical studies suggested the potential in developing therapeutics of Alzheimer's disease (AD) by targeting bromodomain containing protein 4 (BRD4), an epigenetic regulatory protein. However, further characterization of AD-related pathological events is urgently required. Here, we investigated the effects of pharmacological degradation or inhibition of BRD4 on AD cell models. Interestingly, we found that both degradation and inhibition of BRD4 by ARV-825 and JQ1, respectively, robustly increased the levels of amyloid-beta (Aβ), which has been associated with the neuropathology of AD. Subsequently, we characterized the mechanisms by which downregulation of BRD4 increases Aβ levels. We found that both degradation and inhibition of BRD4 increased the levels of BACE1, the enzyme responsible for cleavage of the amyloid-beta protein precursor (APP) to generate Aβ. Consistent with Aβ increase, we also found that downregulation of BRD4 increased AD-related phosphorylated Tau (pTau) protein in our 3D-AD human neural cell culture model. Therefore, our results suggest that downregulation of BRD4 would not be a viable strategy for AD intervention. Collectively, our study not only shows that BRD4 is a novel epigenetic component that regulates BACE1 and Aβ levels, but also provides novel and translational insights into the targeting of BRD4 for potential clinical applications.
Annals of the ICRPMedicine-Public Health, Environmental and Occupational Health
CiteScore
4.10
自引率
0.00%
发文量
3
期刊介绍:
The International Commission on Radiological Protection was founded in 1928 to advance for the public benefit the science of radiological protection. The ICRP provides recommendations and guidance on protection against the risks associated with ionising radiation, from artificial sources as widely used in medicine, general industry and nuclear enterprises, and from naturally occurring sources. These reports and recommendations are published six times each year on behalf of the ICRP as the journal Annals of the ICRP. Each issue provides in-depth coverage of a specific subject area.