B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton
{"title":"具有衰减包膜的三维抗生素洗脱生物可吸收支架的研制","authors":"B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton","doi":"10.4028/www.scientific.net/JBBTE.15.55","DOIUrl":null,"url":null,"abstract":"Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"141 1","pages":"55 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of 3D Antibiotic-Eluting Bioresorbable Scaffold with Attenuating Envelopes\",\"authors\":\"B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton\",\"doi\":\"10.4028/www.scientific.net/JBBTE.15.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"141 1\",\"pages\":\"55 - 62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.15.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.15.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of 3D Antibiotic-Eluting Bioresorbable Scaffold with Attenuating Envelopes
Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.