具有衰减包膜的三维抗生素洗脱生物可吸收支架的研制

B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton
{"title":"具有衰减包膜的三维抗生素洗脱生物可吸收支架的研制","authors":"B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton","doi":"10.4028/www.scientific.net/JBBTE.15.55","DOIUrl":null,"url":null,"abstract":"Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"141 1","pages":"55 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of 3D Antibiotic-Eluting Bioresorbable Scaffold with Attenuating Envelopes\",\"authors\":\"B. Chow, A. Baume, P. Lok, Jake D. Cao, N. Coleman, A. Ruys, P. Boughton\",\"doi\":\"10.4028/www.scientific.net/JBBTE.15.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"141 1\",\"pages\":\"55 - 62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.15.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.15.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

厚切片3D生物可吸收支架被认为是生物皮肤移植和支持填充物的潜在替代品,用于治疗慢性伤口溃疡。合成生物可吸收支架避免人类和动物来源的污染风险,提供可行的保质期,可用性和成本,并作为局部药物洗脱的一致平台。研究了一种生物可吸收聚酯支架(Infilon™)作为氯霉素抗生素(CAP)联合生物活性包膜的药物递送载体。分析了不同包膜方案对支架上抗生素洗脱谱和抑菌效力的影响。支架的最大抗生素负载效率为10.18% W/ W。抗生素洗脱谱图显示,爆发期持续1小时后,持续期接近渐近释放。大块金属玻璃(BMG)和生物玻璃45S5的包膜排列减少了抗生素释放总量1至1.8 Mg,而聚乙烯氧化物包膜将爆发阶段延长至2小时。负载CAP的支架在24小时内显示出抗菌效果。结果显示Infilon™支架有潜力用作局部抗生素递送平台。输送配置文件可以增强额外的BMG或生物玻璃信封。这种方法有机会提供抗菌作用和颗粒组织在最终伤口愈合后的庇护的协同耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of 3D Antibiotic-Eluting Bioresorbable Scaffold with Attenuating Envelopes
Thick Section 3D Bioresorbable Scaffolds Are Proposed as a Potential Alternative to Biologic Skin Grafts and Supportive Fillers for Non-Healing Chronic Wound Ulcers. Synthetic Bioresorbable Scaffolds Avoid Human and Animal Derived Contamination Risks, Provide Feasible Shelf Life, Availability and Cost, and Act as a Consistent Platform for Localized Drug Elution. A Bioresorbable Polyester-Based Scaffold (Infilon™) Was Investigated as a Drug Delivery Vehicle for Chloramphenicol Antibiotic (CAP) Combined with a Bioactive Envelope. the Effect of Varying Envelope Protocols on Antibiotic Elution Profile and Antimicrobial Potency on Scaffolds Were Analysed. the Maximum Antibiotic Loading Efficiency of the Scaffold Was 10.18% W/w. the Antibiotic Elution Profile Showed that the Burst Phase Lasted One Hour Subsequent to a Sustained Phase Approaching near Asymptotic Release. Envelope Permutations of Bulk Metallic Glass (BMG) and Bioglass 45S5 Reduced the Total Amount of Antibiotic Released by 1 to 1.8 Mg while the Polyethylene Oxide Envelope Extended the Burst Phase to 2 Hours. CAP Loaded Scaffolds Demonstrated Antimicrobial Effectiveness for 24 Hours. Results Show Potential for the Infilon™ Scaffold to Be Used as a Platform for Localized Antibiotic Delivery. Delivery Profiles Can Be Enhanced with Additional BMG or Bioglass Envelopes. this Approach Has Opportunity to Provide a Synergistic Coupling of Antimicrobial Action and the Harbouring of Granular Tissue Subsequent to Final Wound Healing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomechanical device for human sensorimotor function Programmable materials for mechanobiology Grasshopper Knee Joint - Torque Analysis of Actuators Using Ionic Polymer Metal Composites (IPMC) Effect of Unilateral Non-Rhythmical Stimulation on Bilateral Cerebral Cortex and Muscle Activation in People Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1