K. Tsukamoto, Atsunori Kajiki, Y. Kunimoto, M. Mizuno, Manabu Nakamura, S. Nakazawa, Toshinori Koyama
{"title":"2.3 3d结构有机封装的信号与功率完整性分析","authors":"K. Tsukamoto, Atsunori Kajiki, Y. Kunimoto, M. Mizuno, Manabu Nakamura, S. Nakazawa, Toshinori Koyama","doi":"10.4071/2380-4505-2019.1.000381","DOIUrl":null,"url":null,"abstract":"\n Heterogeneous packaging is one of the advanced technologies. Especially for high-end applications such as data center server, HPC and Artificial-Intelligence (AI), High-Bandwidth Memory (HBM) integration is a key and strongly required. As we know, the 2.5D silicon interposer packaging is an expanded solution for HBM interconnections. However, we developed 2.1D high density organic package called i-THOP® (integrated-Thin film High density Organic Package) to take advantages of an organic solution. Furthermore, we are now focusing on 2.3D i-THOP® to have more benefits in the manufacturing. The 2.3D structure consists of two substrates. One is a thin i-THOP® interposer, the other one is a conventional build-up (BU) substrate. These two substrates are combined as the interposer placed onto the build-up substrate. In this paper, the electrical properties of 2.3D i-THOP® are studied to confirm the possibility of the 2.3D structure organic packages from the perspective of signal and power integrity. Firstly, the signal integrity between two devices is simulated, comparing the differences between i-THOP® and the 2.5D silicon interposer. Secondly, the signal integrity in die-to-substrate vertical interconnection is simulated, comparing between 2.1D, 2.3D i-THOP® and the 2.5D silicon interposer. Finally, as for the power delivery point of view, power distribution network (PDN) impedance is compared between 2.1D and 2.3D i-THOP®.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis on Signal and Power Integrity of 2.3D Structure Organic Package\",\"authors\":\"K. Tsukamoto, Atsunori Kajiki, Y. Kunimoto, M. Mizuno, Manabu Nakamura, S. Nakazawa, Toshinori Koyama\",\"doi\":\"10.4071/2380-4505-2019.1.000381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Heterogeneous packaging is one of the advanced technologies. Especially for high-end applications such as data center server, HPC and Artificial-Intelligence (AI), High-Bandwidth Memory (HBM) integration is a key and strongly required. As we know, the 2.5D silicon interposer packaging is an expanded solution for HBM interconnections. However, we developed 2.1D high density organic package called i-THOP® (integrated-Thin film High density Organic Package) to take advantages of an organic solution. Furthermore, we are now focusing on 2.3D i-THOP® to have more benefits in the manufacturing. The 2.3D structure consists of two substrates. One is a thin i-THOP® interposer, the other one is a conventional build-up (BU) substrate. These two substrates are combined as the interposer placed onto the build-up substrate. In this paper, the electrical properties of 2.3D i-THOP® are studied to confirm the possibility of the 2.3D structure organic packages from the perspective of signal and power integrity. Firstly, the signal integrity between two devices is simulated, comparing the differences between i-THOP® and the 2.5D silicon interposer. Secondly, the signal integrity in die-to-substrate vertical interconnection is simulated, comparing between 2.1D, 2.3D i-THOP® and the 2.5D silicon interposer. Finally, as for the power delivery point of view, power distribution network (PDN) impedance is compared between 2.1D and 2.3D i-THOP®.\",\"PeriodicalId\":14363,\"journal\":{\"name\":\"International Symposium on Microelectronics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Microelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2019.1.000381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
异构封装是一种先进的封装技术。特别是对于数据中心服务器、高性能计算(HPC)和人工智能(AI)等高端应用,高带宽内存(HBM)集成是关键,也是迫切需要的。众所周知,2.5D硅中间层封装是HBM互连的扩展解决方案。然而,我们开发了2.1D高密度有机封装,称为i-THOP®(集成薄膜高密度有机封装),以利用有机溶液的优势。此外,我们现在正专注于2.3D i-THOP®,以在制造中获得更多的好处。2.3 3d结构由两个衬底组成。一个是薄i-THOP®中间层,另一个是传统的积层(BU)基板。这两种衬底被组合为放置在构筑衬底上的中间物。本文对2.3 3d i-THOP®的电学特性进行了研究,从信号和功率完整性的角度证实了2.3 3d结构有机封装的可能性。首先,模拟了两个器件之间的信号完整性,比较了i-THOP®和2.5D硅中间层之间的差异。其次,模拟了芯片与衬底垂直互连中的信号完整性,比较了2.1D、2.3D i-THOP®和2.5D硅中间层的信号完整性。最后,从电力输送的角度,比较了2.1D和2.3D i-THOP®的配电网络(PDN)阻抗。
Analysis on Signal and Power Integrity of 2.3D Structure Organic Package
Heterogeneous packaging is one of the advanced technologies. Especially for high-end applications such as data center server, HPC and Artificial-Intelligence (AI), High-Bandwidth Memory (HBM) integration is a key and strongly required. As we know, the 2.5D silicon interposer packaging is an expanded solution for HBM interconnections. However, we developed 2.1D high density organic package called i-THOP® (integrated-Thin film High density Organic Package) to take advantages of an organic solution. Furthermore, we are now focusing on 2.3D i-THOP® to have more benefits in the manufacturing. The 2.3D structure consists of two substrates. One is a thin i-THOP® interposer, the other one is a conventional build-up (BU) substrate. These two substrates are combined as the interposer placed onto the build-up substrate. In this paper, the electrical properties of 2.3D i-THOP® are studied to confirm the possibility of the 2.3D structure organic packages from the perspective of signal and power integrity. Firstly, the signal integrity between two devices is simulated, comparing the differences between i-THOP® and the 2.5D silicon interposer. Secondly, the signal integrity in die-to-substrate vertical interconnection is simulated, comparing between 2.1D, 2.3D i-THOP® and the 2.5D silicon interposer. Finally, as for the power delivery point of view, power distribution network (PDN) impedance is compared between 2.1D and 2.3D i-THOP®.