{"title":"新的可辨识性条件下具有乘法扭曲的线性回归模型","authors":"Jun Zhang, Bingqing Lin, Yan Zhou","doi":"10.1111/stan.12304","DOIUrl":null,"url":null,"abstract":"This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"39 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear Regression Models with Multiplicative Distortions under New Identifiability Conditions\",\"authors\":\"Jun Zhang, Bingqing Lin, Yan Zhou\",\"doi\":\"10.1111/stan.12304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12304\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12304","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Linear Regression Models with Multiplicative Distortions under New Identifiability Conditions
This paper considers linear regression models when neither the response variable nor the covariates can be directly observed, but are measured with multiplicative distortion measurement errors. We propose new identifiability conditions for the distortion functions via the varying coefficient models, then moment‐based estimators of parameters in the model are proposed by using the estimated varying coefficient functions. This method does not require the independence condition between the confounding variables and the unobserved response and variables. We establish the connections among the varying coefficient based estimators, the conditional mean calibration and the conditional absolute mean calibration. We study the asymptotic results of these proposed estimators, and discuss their asymptotic efficiencies. Lastly, we make some comparisons among the proposed estimators through the simulation. These methods are applied to analyze a real dataset for an illustration.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.