{"title":"l -茶氨酸:对三氯乙烯诱导的帕金森病特征的神经保护作用","authors":"Justin Z Y Shen","doi":"10.5897/jtehs2020.0468","DOIUrl":null,"url":null,"abstract":"Trichloroethylene (TCE), a common water pollutant linked to Parkinson’s Disease (PD), induces dopaminergic neurodegeneration. L-Theanine (L-Th) was explored as a potential treatment for TCE-induced PD due to its previously elucidated neuroprotective properties. Cell viability, cytotoxicity, and cell density were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay (n=8), lactate dehydrogenase (LDH) assay (n=4), and cell image analysis (n=6), respectively. GT1-7 and SK-N-SH cells served as dopaminergic and neuronal cell models, respectively. In GT1-7 cells, L-Th 600 μM diminished TCE 1000 μM-induced cell death and TCE 1000 μM-induced LDH release by 81% (p<0.001) and 38% (p<0.001), respectively, after 48 h. L-Th also did not significantly impact LDH leakage in healthy GT1-7 cells. In SK-N-SH cells, L-Th 600 μM attenuated TCE 100 μM’s neurodegenerative effects by increasing cellular density and cellular area by 118% (p<0.01) and 170% (p<0.001), respectively, after 24 h. L-Th’s mitigation of TCE’s neurotoxic and neurodegenerative effects in dopaminergic neurons can prevent dopaminergic neurodegeneration: linked to PD onset. L-Th’s ability to preserve healthy GT1-7 cells indicates that L-Th not neurotoxic in vitro. This research marks the identification of the first potential treatment for TCE-induced PD. Future investigations should explore the mechanism of L-Th and TCE’s interactions. \n \n Keywords: Trichloroethylene, environmental toxin, L-Theanine, Parkinson’s disease, neurodegeneration.","PeriodicalId":17507,"journal":{"name":"Journal of Toxicology and Environmental Health Sciences","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L-Theanine: Neuroprotective against Trichloroethylene-induced Parkinsons disease hallmarks\",\"authors\":\"Justin Z Y Shen\",\"doi\":\"10.5897/jtehs2020.0468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trichloroethylene (TCE), a common water pollutant linked to Parkinson’s Disease (PD), induces dopaminergic neurodegeneration. L-Theanine (L-Th) was explored as a potential treatment for TCE-induced PD due to its previously elucidated neuroprotective properties. Cell viability, cytotoxicity, and cell density were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay (n=8), lactate dehydrogenase (LDH) assay (n=4), and cell image analysis (n=6), respectively. GT1-7 and SK-N-SH cells served as dopaminergic and neuronal cell models, respectively. In GT1-7 cells, L-Th 600 μM diminished TCE 1000 μM-induced cell death and TCE 1000 μM-induced LDH release by 81% (p<0.001) and 38% (p<0.001), respectively, after 48 h. L-Th also did not significantly impact LDH leakage in healthy GT1-7 cells. In SK-N-SH cells, L-Th 600 μM attenuated TCE 100 μM’s neurodegenerative effects by increasing cellular density and cellular area by 118% (p<0.01) and 170% (p<0.001), respectively, after 24 h. L-Th’s mitigation of TCE’s neurotoxic and neurodegenerative effects in dopaminergic neurons can prevent dopaminergic neurodegeneration: linked to PD onset. L-Th’s ability to preserve healthy GT1-7 cells indicates that L-Th not neurotoxic in vitro. This research marks the identification of the first potential treatment for TCE-induced PD. Future investigations should explore the mechanism of L-Th and TCE’s interactions. \\n \\n Keywords: Trichloroethylene, environmental toxin, L-Theanine, Parkinson’s disease, neurodegeneration.\",\"PeriodicalId\":17507,\"journal\":{\"name\":\"Journal of Toxicology and Environmental Health Sciences\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicology and Environmental Health Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/jtehs2020.0468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/jtehs2020.0468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
L-Theanine: Neuroprotective against Trichloroethylene-induced Parkinsons disease hallmarks
Trichloroethylene (TCE), a common water pollutant linked to Parkinson’s Disease (PD), induces dopaminergic neurodegeneration. L-Theanine (L-Th) was explored as a potential treatment for TCE-induced PD due to its previously elucidated neuroprotective properties. Cell viability, cytotoxicity, and cell density were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay (n=8), lactate dehydrogenase (LDH) assay (n=4), and cell image analysis (n=6), respectively. GT1-7 and SK-N-SH cells served as dopaminergic and neuronal cell models, respectively. In GT1-7 cells, L-Th 600 μM diminished TCE 1000 μM-induced cell death and TCE 1000 μM-induced LDH release by 81% (p<0.001) and 38% (p<0.001), respectively, after 48 h. L-Th also did not significantly impact LDH leakage in healthy GT1-7 cells. In SK-N-SH cells, L-Th 600 μM attenuated TCE 100 μM’s neurodegenerative effects by increasing cellular density and cellular area by 118% (p<0.01) and 170% (p<0.001), respectively, after 24 h. L-Th’s mitigation of TCE’s neurotoxic and neurodegenerative effects in dopaminergic neurons can prevent dopaminergic neurodegeneration: linked to PD onset. L-Th’s ability to preserve healthy GT1-7 cells indicates that L-Th not neurotoxic in vitro. This research marks the identification of the first potential treatment for TCE-induced PD. Future investigations should explore the mechanism of L-Th and TCE’s interactions.
Keywords: Trichloroethylene, environmental toxin, L-Theanine, Parkinson’s disease, neurodegeneration.