Hung Nguyen Thanh, Phuong Pham Thi Mai, To Dang Thi, T. Le Minh
{"title":"SrTiO3钙钛矿与氧化CuO-ZnO混合氧化物对甲烷氧化偶联催化活性的比较研究","authors":"Hung Nguyen Thanh, Phuong Pham Thi Mai, To Dang Thi, T. Le Minh","doi":"10.51316/jca.2022.060","DOIUrl":null,"url":null,"abstract":"In this study, SrTiO3 catalyst was prepared by sol-gel method and CuO-ZnO by co-precipitation for oxidative coupling of methane (OCM). The results showed that the conversion rate in the SrTiO3 sample was high (about 35%) at 850 oC, and the product C2H4 with an yield of 0.12%. Several modern analytical methods such as XRD, BET, TPx, SEM have been characterized. The XRD results showed a stable phase structure and high crystallinity with both samples. NH3-TPD recorded weak acid centers on SrTiO3, leading to coke formation on the impact surface. H2-TPR and O2-TPD express the redox of CuO-ZnO, resulting in a deep oxidation product of CO2. Factors affecting the ratio of C2H6 and C2H4 were also considered.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on the catalytic activities of the SrTiO3 perovskite and oxide CuO-ZnO mixed oxides for the oxidative coupling of methane\",\"authors\":\"Hung Nguyen Thanh, Phuong Pham Thi Mai, To Dang Thi, T. Le Minh\",\"doi\":\"10.51316/jca.2022.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, SrTiO3 catalyst was prepared by sol-gel method and CuO-ZnO by co-precipitation for oxidative coupling of methane (OCM). The results showed that the conversion rate in the SrTiO3 sample was high (about 35%) at 850 oC, and the product C2H4 with an yield of 0.12%. Several modern analytical methods such as XRD, BET, TPx, SEM have been characterized. The XRD results showed a stable phase structure and high crystallinity with both samples. NH3-TPD recorded weak acid centers on SrTiO3, leading to coke formation on the impact surface. H2-TPR and O2-TPD express the redox of CuO-ZnO, resulting in a deep oxidation product of CO2. Factors affecting the ratio of C2H6 and C2H4 were also considered.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51316/jca.2022.060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51316/jca.2022.060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study on the catalytic activities of the SrTiO3 perovskite and oxide CuO-ZnO mixed oxides for the oxidative coupling of methane
In this study, SrTiO3 catalyst was prepared by sol-gel method and CuO-ZnO by co-precipitation for oxidative coupling of methane (OCM). The results showed that the conversion rate in the SrTiO3 sample was high (about 35%) at 850 oC, and the product C2H4 with an yield of 0.12%. Several modern analytical methods such as XRD, BET, TPx, SEM have been characterized. The XRD results showed a stable phase structure and high crystallinity with both samples. NH3-TPD recorded weak acid centers on SrTiO3, leading to coke formation on the impact surface. H2-TPR and O2-TPD express the redox of CuO-ZnO, resulting in a deep oxidation product of CO2. Factors affecting the ratio of C2H6 and C2H4 were also considered.