{"title":"杏仁胶辅助合成Mg掺杂Fe2O3纳米粒子:结构分析、电化学传感和光学应用","authors":"Madanakumara Hanumanthappa , Jayanna Halepoojar Siddalingappa , Yellamagad Channabasaveshwara , Soundeswaran Sundararajan , Mruthyunjaya Vishwas , Shyamala Kurki Srinivasaiah , Surendra Boppanahalli Siddegowda , Basavaraju Nandeesh","doi":"10.1016/j.chphma.2022.04.010","DOIUrl":null,"url":null,"abstract":"<div><p>Mg-doped Fe<sub>2</sub>O<sub>3</sub> nanoparticles (M-FNPs) are successfully prepared first time by facile green-aided (almond gum) combustion route. The structural analysis of synthesized nanoparticles was well analyzed by Powder X-ray Diffraction (PXRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Raman spectroscopy and UV-Visible spectral studies. PXRD showed a nanocrystalline nature and determined the average particle size to be 85 nm. The surface morphologies of the prepared nanocomposite was measured by SEM technique reveals the porous and spongy like structure. The photodegradation activity on 20 × 10<sup>−6</sup> of Fast Orange Red (FOR) organic model dye using M-FNPs (50 mg) under UV light irradiation was investigatedin detail. Electrochemical examination of the prepared material was conducted using graphite–M-FNP electrode paste in 0.1 M KCl solution, and its performance in redox reaction was determined to be very good via cyclic voltammetry and electrochemical impedance spectroscopy. Further, an extension to sensor studies revealed broad differences in redox positions for paracetamol sensors, at 0.64 V and 0.41 V, confirming highly chemical sensor activity in alkaline medium for 1∼5 mM concentrations.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"1 4","pages":"Pages 330-337"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772571522000328/pdfft?md5=3b2eceedf447dfb9d5b1b0c8a3bc46d9&pid=1-s2.0-S2772571522000328-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Almond gum assisted synthesis of Mg doped Fe2O3 NPs: Structural analysis, electrochemical sensing, and optical applications\",\"authors\":\"Madanakumara Hanumanthappa , Jayanna Halepoojar Siddalingappa , Yellamagad Channabasaveshwara , Soundeswaran Sundararajan , Mruthyunjaya Vishwas , Shyamala Kurki Srinivasaiah , Surendra Boppanahalli Siddegowda , Basavaraju Nandeesh\",\"doi\":\"10.1016/j.chphma.2022.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mg-doped Fe<sub>2</sub>O<sub>3</sub> nanoparticles (M-FNPs) are successfully prepared first time by facile green-aided (almond gum) combustion route. The structural analysis of synthesized nanoparticles was well analyzed by Powder X-ray Diffraction (PXRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Raman spectroscopy and UV-Visible spectral studies. PXRD showed a nanocrystalline nature and determined the average particle size to be 85 nm. The surface morphologies of the prepared nanocomposite was measured by SEM technique reveals the porous and spongy like structure. The photodegradation activity on 20 × 10<sup>−6</sup> of Fast Orange Red (FOR) organic model dye using M-FNPs (50 mg) under UV light irradiation was investigatedin detail. Electrochemical examination of the prepared material was conducted using graphite–M-FNP electrode paste in 0.1 M KCl solution, and its performance in redox reaction was determined to be very good via cyclic voltammetry and electrochemical impedance spectroscopy. Further, an extension to sensor studies revealed broad differences in redox positions for paracetamol sensors, at 0.64 V and 0.41 V, confirming highly chemical sensor activity in alkaline medium for 1∼5 mM concentrations.</p></div>\",\"PeriodicalId\":100236,\"journal\":{\"name\":\"ChemPhysMater\",\"volume\":\"1 4\",\"pages\":\"Pages 330-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772571522000328/pdfft?md5=3b2eceedf447dfb9d5b1b0c8a3bc46d9&pid=1-s2.0-S2772571522000328-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhysMater\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772571522000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571522000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用绿色辅助(杏仁胶)燃烧方法首次成功制备了mg掺杂Fe2O3纳米颗粒(M-FNPs)。采用粉末x射线衍射(PXRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、拉曼光谱和紫外可见光谱对合成的纳米颗粒进行了结构分析。PXRD结果表明,该材料为纳米晶,平均粒径为85 nm。利用扫描电镜对制备的纳米复合材料表面形貌进行了检测,发现其具有多孔和海绵状结构。研究了M-FNPs (50 mg)对20 × 10−6的Fast Orange Red (FOR)有机模型染料的紫外降解活性。用石墨- M- fnp电极膏在0.1 M KCl溶液中对制备的材料进行了电化学检测,并通过循环伏安法和电化学阻抗谱法确定其在氧化还原反应中的性能良好。此外,对传感器研究的扩展揭示了扑热息痛传感器在0.64 V和0.41 V时氧化还原位置的广泛差异,证实了在1 ~ 5 mM浓度的碱性介质中具有高度化学传感器活性。
Almond gum assisted synthesis of Mg doped Fe2O3 NPs: Structural analysis, electrochemical sensing, and optical applications
Mg-doped Fe2O3 nanoparticles (M-FNPs) are successfully prepared first time by facile green-aided (almond gum) combustion route. The structural analysis of synthesized nanoparticles was well analyzed by Powder X-ray Diffraction (PXRD), Fourier Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscope (SEM), Raman spectroscopy and UV-Visible spectral studies. PXRD showed a nanocrystalline nature and determined the average particle size to be 85 nm. The surface morphologies of the prepared nanocomposite was measured by SEM technique reveals the porous and spongy like structure. The photodegradation activity on 20 × 10−6 of Fast Orange Red (FOR) organic model dye using M-FNPs (50 mg) under UV light irradiation was investigatedin detail. Electrochemical examination of the prepared material was conducted using graphite–M-FNP electrode paste in 0.1 M KCl solution, and its performance in redox reaction was determined to be very good via cyclic voltammetry and electrochemical impedance spectroscopy. Further, an extension to sensor studies revealed broad differences in redox positions for paracetamol sensors, at 0.64 V and 0.41 V, confirming highly chemical sensor activity in alkaline medium for 1∼5 mM concentrations.