一种基于多核矢量处理器的射电天文数据高效网格化方法

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2022-10-01 DOI:10.1016/j.parco.2022.102972
Hao Wang , Ce Yu , Jian Xiao , Shanjiang Tang , Yu Lu , Hao Fu , Bo Kang , Gang Zheng , Chenzhou Cui
{"title":"一种基于多核矢量处理器的射电天文数据高效网格化方法","authors":"Hao Wang ,&nbsp;Ce Yu ,&nbsp;Jian Xiao ,&nbsp;Shanjiang Tang ,&nbsp;Yu Lu ,&nbsp;Hao Fu ,&nbsp;Bo Kang ,&nbsp;Gang Zheng ,&nbsp;Chenzhou Cui","doi":"10.1016/j.parco.2022.102972","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Gridding is the performance-critical step in the data reduction pipeline for radio astronomy research, allowing astronomers to create the correct sky images for further analysis. Like the 2D stencil computation, gridding iteratively updates the output cells by convolution, where the value at each output cell in the space is computed as a weighted sum of neighboring point values. Existing state-of-the-art works have achieved performance improvement of gridding by using multi-core CPUs and GPUs in real-world applications, and their study proved that gridding is a type of scientific computation with high-density computing characteristics. However, low computational performance or high </span>power consumption<span> becomes the main limitation for their processing of large-scale astronomical data. The high-density computing feature of gridding provides opportunities to accelerate it on the multi-core vector processor with vector-SIMD architectures. However, existing works’ (such as those implemented on CPUs or GPUs) task </span></span>parallelization<span> and data transfer strategies are inefficient to perform gridding directly on the vector processor without any dedicated mapping algorithm.</span></p><p>M-DSP is a multi-core vector processor with vector-SIMD architectures designed for the next-generation exascale supercomputer<span>, delivering high performance with ultra-low power consumption. In this paper, we present, for the first time, a novel method to achieve efficient gridding on the M-DSP. Specifically, we propose a gridding workflow designed for the vector-SIMD architectures and present a vectorized version<span> of the gridding convolution algorithm to fully exploit the computational power of the M-DSP. In addition, centering on the processor architectures, we propose task-based parallelization strategies for block and line computing as well as different data loading strategies to achieve high parallel performance and high data transfer efficiency. Experimental results show that our work on M-DSP exhibits very competitive performance compared to other methods running on CPUs or GPUs. This demonstrates the efficiency of our method and the fact that the vector-SIMD architecture is beneficial for scientific computing with ”high density” characteristics, which can exploit its wide vector core and achieve higher performance than its competitors.</span></span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"113 ","pages":"Article 102972"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for efficient radio astronomical data gridding on multi-core vector processor\",\"authors\":\"Hao Wang ,&nbsp;Ce Yu ,&nbsp;Jian Xiao ,&nbsp;Shanjiang Tang ,&nbsp;Yu Lu ,&nbsp;Hao Fu ,&nbsp;Bo Kang ,&nbsp;Gang Zheng ,&nbsp;Chenzhou Cui\",\"doi\":\"10.1016/j.parco.2022.102972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Gridding is the performance-critical step in the data reduction pipeline for radio astronomy research, allowing astronomers to create the correct sky images for further analysis. Like the 2D stencil computation, gridding iteratively updates the output cells by convolution, where the value at each output cell in the space is computed as a weighted sum of neighboring point values. Existing state-of-the-art works have achieved performance improvement of gridding by using multi-core CPUs and GPUs in real-world applications, and their study proved that gridding is a type of scientific computation with high-density computing characteristics. However, low computational performance or high </span>power consumption<span> becomes the main limitation for their processing of large-scale astronomical data. The high-density computing feature of gridding provides opportunities to accelerate it on the multi-core vector processor with vector-SIMD architectures. However, existing works’ (such as those implemented on CPUs or GPUs) task </span></span>parallelization<span> and data transfer strategies are inefficient to perform gridding directly on the vector processor without any dedicated mapping algorithm.</span></p><p>M-DSP is a multi-core vector processor with vector-SIMD architectures designed for the next-generation exascale supercomputer<span>, delivering high performance with ultra-low power consumption. In this paper, we present, for the first time, a novel method to achieve efficient gridding on the M-DSP. Specifically, we propose a gridding workflow designed for the vector-SIMD architectures and present a vectorized version<span> of the gridding convolution algorithm to fully exploit the computational power of the M-DSP. In addition, centering on the processor architectures, we propose task-based parallelization strategies for block and line computing as well as different data loading strategies to achieve high parallel performance and high data transfer efficiency. Experimental results show that our work on M-DSP exhibits very competitive performance compared to other methods running on CPUs or GPUs. This demonstrates the efficiency of our method and the fact that the vector-SIMD architecture is beneficial for scientific computing with ”high density” characteristics, which can exploit its wide vector core and achieve higher performance than its competitors.</span></span></p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"113 \",\"pages\":\"Article 102972\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016781912200062X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016781912200062X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

网格化是射电天文学研究中数据简化管道中性能关键的一步,它允许天文学家为进一步分析创建正确的天空图像。与2D模板计算一样,网格化通过卷积迭代更新输出单元,其中空间中每个输出单元的值被计算为相邻点值的加权和。现有的先进工作已经通过在实际应用中使用多核cpu和gpu实现了网格化的性能提升,他们的研究证明了网格化是一种具有高密度计算特性的科学计算。然而,低计算性能或高功耗成为它们处理大规模天文数据的主要限制。网格的高密度计算特性为在具有矢量simd架构的多核矢量处理器上加速网格提供了机会。然而,现有的工作(如那些在cpu或gpu上实现的)任务并行化和数据传输策略在没有任何专用映射算法的情况下直接在矢量处理器上执行网格划分是低效的。M-DSP是一款多核矢量处理器,采用矢量simd架构,专为下一代百亿亿次超级计算机设计,具有高性能和超低功耗。在本文中,我们首次提出了一种在M-DSP上实现高效网格划分的新方法。具体来说,我们提出了一个为矢量simd架构设计的网格工作流程,并提出了网格卷积算法的矢量化版本,以充分利用M-DSP的计算能力。此外,我们围绕处理器架构提出了基于任务的并行化策略,用于块计算和行计算,以及不同的数据加载策略,以实现高并行性能和高数据传输效率。实验结果表明,与其他在cpu或gpu上运行的方法相比,我们在M-DSP上的工作表现出非常有竞争力的性能。这表明了我们的方法的有效性,并且矢量simd架构有利于具有“高密度”特征的科学计算,可以利用其宽矢量核并获得比竞争对手更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method for efficient radio astronomical data gridding on multi-core vector processor

Gridding is the performance-critical step in the data reduction pipeline for radio astronomy research, allowing astronomers to create the correct sky images for further analysis. Like the 2D stencil computation, gridding iteratively updates the output cells by convolution, where the value at each output cell in the space is computed as a weighted sum of neighboring point values. Existing state-of-the-art works have achieved performance improvement of gridding by using multi-core CPUs and GPUs in real-world applications, and their study proved that gridding is a type of scientific computation with high-density computing characteristics. However, low computational performance or high power consumption becomes the main limitation for their processing of large-scale astronomical data. The high-density computing feature of gridding provides opportunities to accelerate it on the multi-core vector processor with vector-SIMD architectures. However, existing works’ (such as those implemented on CPUs or GPUs) task parallelization and data transfer strategies are inefficient to perform gridding directly on the vector processor without any dedicated mapping algorithm.

M-DSP is a multi-core vector processor with vector-SIMD architectures designed for the next-generation exascale supercomputer, delivering high performance with ultra-low power consumption. In this paper, we present, for the first time, a novel method to achieve efficient gridding on the M-DSP. Specifically, we propose a gridding workflow designed for the vector-SIMD architectures and present a vectorized version of the gridding convolution algorithm to fully exploit the computational power of the M-DSP. In addition, centering on the processor architectures, we propose task-based parallelization strategies for block and line computing as well as different data loading strategies to achieve high parallel performance and high data transfer efficiency. Experimental results show that our work on M-DSP exhibits very competitive performance compared to other methods running on CPUs or GPUs. This demonstrates the efficiency of our method and the fact that the vector-SIMD architecture is beneficial for scientific computing with ”high density” characteristics, which can exploit its wide vector core and achieve higher performance than its competitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1