利用SCPINN预测光纤中光孤子的非线性动力学

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2022-12-01 DOI:10.1016/j.chaos.2022.112908
Yin Fang, Wen-Bo Bo, Ru-Ru Wang, Yue-Yue Wang, Chao-Qing Dai
{"title":"利用SCPINN预测光纤中光孤子的非线性动力学","authors":"Yin Fang,&nbsp;Wen-Bo Bo,&nbsp;Ru-Ru Wang,&nbsp;Yue-Yue Wang,&nbsp;Chao-Qing Dai","doi":"10.1016/j.chaos.2022.112908","DOIUrl":null,"url":null,"abstract":"<div><p>The strongly-constrained physics-informed neural network<span><span> (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network (PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical </span>solitons<span>, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5–11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber.</span></span></p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN\",\"authors\":\"Yin Fang,&nbsp;Wen-Bo Bo,&nbsp;Ru-Ru Wang,&nbsp;Yue-Yue Wang,&nbsp;Chao-Qing Dai\",\"doi\":\"10.1016/j.chaos.2022.112908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The strongly-constrained physics-informed neural network<span><span> (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network (PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical </span>solitons<span>, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5–11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber.</span></span></p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077922010876\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077922010876","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

摘要

将复合导数嵌入信息加入到物理信息神经网络的软约束中,提出了强约束物理信息神经网络。它用于预测单模光纤中亮皮秒光孤子和暗皮秒光孤子以及飞秒孤子分子的非线性动力学和形成过程,揭示了孤子传输过程中脉冲的能量、振幅、频谱和相位等物理量的变化。在该神经网络中引入自适应权值来加速损失函数的收敛。与PINN相比,SCPINN预测孤子动力学的精度提高了5-11倍。因此,SCPINN是研究光纤中孤子动力学建模和分析的前瞻性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN

The strongly-constrained physics-informed neural network (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network (PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical solitons, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5–11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1