Rolf F Storms, Claudio Carere, Robert Musters, Hans van Gasteren, Simon Verhulst, Charlotte K Hemelrijk
{"title":"用人工捕食者 \"机器猎鹰 \"威慑鸟类。","authors":"Rolf F Storms, Claudio Carere, Robert Musters, Hans van Gasteren, Simon Verhulst, Charlotte K Hemelrijk","doi":"10.1098/rsif.2022.0497","DOIUrl":null,"url":null,"abstract":"<p><p>Collisions between birds and airplanes can damage aircrafts, resulting in delays and cancellation of flights, costing the international civil aviation industry more than 1.4 billion US dollars annually. Driving away birds is therefore crucial, but the effectiveness of current deterrence methods is limited. Live avian predators can be an effective deterrent, because potential prey will not habituate to them, but live predators cannot be controlled entirely. Thus, there is an urgent need for new deterrence methods. We developed the RobotFalcon, a device modelled after the peregrine falcon, and tested its effectiveness to deter flocks of corvids, gulls, starlings and lapwings. We compared its effectiveness with that of a drone, and of conventional methods routinely applied at a military airbase. The RobotFalcon scared away bird flocks from fields immediately, and these fields subsequently remained free of bird flocks for hours. The RobotFalcon outperformed the drone and the best conventional method at the airbase (distress calls). Importantly, there was no evidence that bird flocks habituated to the RobotFalcon over the course of the fieldwork. We conclude that the RobotFalcon is a practical and ethical solution to drive away bird flocks with all advantages of live predators but without their limitations.</p>","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"11 1","pages":"20220497"},"PeriodicalIF":3.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deterrence of birds with an artificial predator, the RobotFalcon.\",\"authors\":\"Rolf F Storms, Claudio Carere, Robert Musters, Hans van Gasteren, Simon Verhulst, Charlotte K Hemelrijk\",\"doi\":\"10.1098/rsif.2022.0497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collisions between birds and airplanes can damage aircrafts, resulting in delays and cancellation of flights, costing the international civil aviation industry more than 1.4 billion US dollars annually. Driving away birds is therefore crucial, but the effectiveness of current deterrence methods is limited. Live avian predators can be an effective deterrent, because potential prey will not habituate to them, but live predators cannot be controlled entirely. Thus, there is an urgent need for new deterrence methods. We developed the RobotFalcon, a device modelled after the peregrine falcon, and tested its effectiveness to deter flocks of corvids, gulls, starlings and lapwings. We compared its effectiveness with that of a drone, and of conventional methods routinely applied at a military airbase. The RobotFalcon scared away bird flocks from fields immediately, and these fields subsequently remained free of bird flocks for hours. The RobotFalcon outperformed the drone and the best conventional method at the airbase (distress calls). Importantly, there was no evidence that bird flocks habituated to the RobotFalcon over the course of the fieldwork. We conclude that the RobotFalcon is a practical and ethical solution to drive away bird flocks with all advantages of live predators but without their limitations.</p>\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"11 1\",\"pages\":\"20220497\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2022.0497\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2022.0497","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Deterrence of birds with an artificial predator, the RobotFalcon.
Collisions between birds and airplanes can damage aircrafts, resulting in delays and cancellation of flights, costing the international civil aviation industry more than 1.4 billion US dollars annually. Driving away birds is therefore crucial, but the effectiveness of current deterrence methods is limited. Live avian predators can be an effective deterrent, because potential prey will not habituate to them, but live predators cannot be controlled entirely. Thus, there is an urgent need for new deterrence methods. We developed the RobotFalcon, a device modelled after the peregrine falcon, and tested its effectiveness to deter flocks of corvids, gulls, starlings and lapwings. We compared its effectiveness with that of a drone, and of conventional methods routinely applied at a military airbase. The RobotFalcon scared away bird flocks from fields immediately, and these fields subsequently remained free of bird flocks for hours. The RobotFalcon outperformed the drone and the best conventional method at the airbase (distress calls). Importantly, there was no evidence that bird flocks habituated to the RobotFalcon over the course of the fieldwork. We conclude that the RobotFalcon is a practical and ethical solution to drive away bird flocks with all advantages of live predators but without their limitations.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4