{"title":"采用多基因遗传规划方法建立了桥梁桥墩冲刷时间演化模型","authors":"W. Zhang, C. Rennie, I. Nistor","doi":"10.1139/cjce-2022-0430","DOIUrl":null,"url":null,"abstract":"Forecasting the time development of scour depth at bridge pier foundations is of great significance to mitigate or avoid the potential failure of bridges. Presently, several models have been developed to predict the scour depth at the base of bridge piers in the case of flood events. This study summarizes existing models for the temporal evolution of bridge pier scour and divides these studies into semiempirical models and empirical models, as well as artificial intelligence models. Several experimental data sets collected from previous studies, 665 points in total, are used to develop a new multigene genetic programming (MGGP) model for temporal scour depth at a circular bridge pier. In addition, independent data, 899 points in total, from previous studies and new physical modeling tests are applied to evaluate the behaviours of existing models, as well as the newly developed MGGP model. It is shown that the MGGP model has good prediction capability when compared with existing empirical and mathematical models.","PeriodicalId":9414,"journal":{"name":"Canadian Journal of Civil Engineering","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new model developed by multigene genetic programming for the temporal evolution of bridge pier scour\",\"authors\":\"W. Zhang, C. Rennie, I. Nistor\",\"doi\":\"10.1139/cjce-2022-0430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting the time development of scour depth at bridge pier foundations is of great significance to mitigate or avoid the potential failure of bridges. Presently, several models have been developed to predict the scour depth at the base of bridge piers in the case of flood events. This study summarizes existing models for the temporal evolution of bridge pier scour and divides these studies into semiempirical models and empirical models, as well as artificial intelligence models. Several experimental data sets collected from previous studies, 665 points in total, are used to develop a new multigene genetic programming (MGGP) model for temporal scour depth at a circular bridge pier. In addition, independent data, 899 points in total, from previous studies and new physical modeling tests are applied to evaluate the behaviours of existing models, as well as the newly developed MGGP model. It is shown that the MGGP model has good prediction capability when compared with existing empirical and mathematical models.\",\"PeriodicalId\":9414,\"journal\":{\"name\":\"Canadian Journal of Civil Engineering\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1139/cjce-2022-0430\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/cjce-2022-0430","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A new model developed by multigene genetic programming for the temporal evolution of bridge pier scour
Forecasting the time development of scour depth at bridge pier foundations is of great significance to mitigate or avoid the potential failure of bridges. Presently, several models have been developed to predict the scour depth at the base of bridge piers in the case of flood events. This study summarizes existing models for the temporal evolution of bridge pier scour and divides these studies into semiempirical models and empirical models, as well as artificial intelligence models. Several experimental data sets collected from previous studies, 665 points in total, are used to develop a new multigene genetic programming (MGGP) model for temporal scour depth at a circular bridge pier. In addition, independent data, 899 points in total, from previous studies and new physical modeling tests are applied to evaluate the behaviours of existing models, as well as the newly developed MGGP model. It is shown that the MGGP model has good prediction capability when compared with existing empirical and mathematical models.
期刊介绍:
The Canadian Journal of Civil Engineering is the official journal of the Canadian Society for Civil Engineering. It contains articles on environmental engineering, hydrotechnical engineering, structural engineering, construction engineering, engineering mechanics, engineering materials, and history of civil engineering. Contributors include recognized researchers and practitioners in industry, government, and academia. New developments in engineering design and construction are also featured.