{"title":"覆盖折扣的突变分析","authors":"Peter Lisherness, Nicole Lesperance, K. Cheng","doi":"10.7873/DATE.2013.021","DOIUrl":null,"url":null,"abstract":"Mutation testing is an established technique for evaluating validation thoroughness, but its adoption has been limited by the manual effort required to analyze the results. This paper describes the use of coverage discounting for mutation analysis, where undetected mutants are explained in terms of functional coverpoints, simplifying their analysis and saving effort. Two benchmarks are shown to compare this improved flow against regular mutation analysis. We also propose a confidence metric and simulation ordering algorithm optimized for coverage discounting, potentially reducing overall simulation time.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"96 1","pages":"31-34"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mutation analysis with coverage discounting\",\"authors\":\"Peter Lisherness, Nicole Lesperance, K. Cheng\",\"doi\":\"10.7873/DATE.2013.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutation testing is an established technique for evaluating validation thoroughness, but its adoption has been limited by the manual effort required to analyze the results. This paper describes the use of coverage discounting for mutation analysis, where undetected mutants are explained in terms of functional coverpoints, simplifying their analysis and saving effort. Two benchmarks are shown to compare this improved flow against regular mutation analysis. We also propose a confidence metric and simulation ordering algorithm optimized for coverage discounting, potentially reducing overall simulation time.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"96 1\",\"pages\":\"31-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mutation testing is an established technique for evaluating validation thoroughness, but its adoption has been limited by the manual effort required to analyze the results. This paper describes the use of coverage discounting for mutation analysis, where undetected mutants are explained in terms of functional coverpoints, simplifying their analysis and saving effort. Two benchmarks are shown to compare this improved flow against regular mutation analysis. We also propose a confidence metric and simulation ordering algorithm optimized for coverage discounting, potentially reducing overall simulation time.