无线电力传输用EF类逆变器的设计与建模

Ioannis Nikiforidis, J. Arteaga, C. Kwan, D. Yates, P. Mitcheson
{"title":"无线电力传输用EF类逆变器的设计与建模","authors":"Ioannis Nikiforidis, J. Arteaga, C. Kwan, D. Yates, P. Mitcheson","doi":"10.1109/PowerMEMS49317.2019.61547406204","DOIUrl":null,"url":null,"abstract":"Class EF inverters have been widely used recently as primary coil drivers for wireless power transfer applications since they achieve constant output current across a range of link coupling factor values. As the operating frequency that the inductive link is tuned at increases the traditional circuit design techniques that are based on first order calculations fail to represent the inverter behaviour accurately. In this paper, we present a novel method of modelling Class EF inverters that is based on state space representation of the circuit and thus providing the highest accuracy possible. Our method consists of a combination of analytical and numerical calculations in such manner that any parasitic component of the circuit, such as the nonlinear output capacitance of a power switch, can be included in the tuning process.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"41 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Modelling of Class EF Inverters for Wireless Power Transfer Applications\",\"authors\":\"Ioannis Nikiforidis, J. Arteaga, C. Kwan, D. Yates, P. Mitcheson\",\"doi\":\"10.1109/PowerMEMS49317.2019.61547406204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class EF inverters have been widely used recently as primary coil drivers for wireless power transfer applications since they achieve constant output current across a range of link coupling factor values. As the operating frequency that the inductive link is tuned at increases the traditional circuit design techniques that are based on first order calculations fail to represent the inverter behaviour accurately. In this paper, we present a novel method of modelling Class EF inverters that is based on state space representation of the circuit and thus providing the highest accuracy possible. Our method consists of a combination of analytical and numerical calculations in such manner that any parasitic component of the circuit, such as the nonlinear output capacitance of a power switch, can be included in the tuning process.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"41 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.61547406204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.61547406204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

EF类逆变器最近被广泛用作无线电力传输应用的初级线圈驱动器,因为它们在一系列链路耦合系数值上实现恒定的输出电流。随着感应环节工作频率的增加,传统的基于一阶计算的电路设计技术不能准确地表示逆变器的行为。在本文中,我们提出了一种基于电路状态空间表示的建模EF类逆变器的新方法,从而提供了尽可能高的精度。我们的方法包括分析和数值计算的结合,这样电路的任何寄生元件,如电源开关的非线性输出电容,都可以包括在调谐过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Modelling of Class EF Inverters for Wireless Power Transfer Applications
Class EF inverters have been widely used recently as primary coil drivers for wireless power transfer applications since they achieve constant output current across a range of link coupling factor values. As the operating frequency that the inductive link is tuned at increases the traditional circuit design techniques that are based on first order calculations fail to represent the inverter behaviour accurately. In this paper, we present a novel method of modelling Class EF inverters that is based on state space representation of the circuit and thus providing the highest accuracy possible. Our method consists of a combination of analytical and numerical calculations in such manner that any parasitic component of the circuit, such as the nonlinear output capacitance of a power switch, can be included in the tuning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Insulation Design of Portable Radioisotope Electrical Generators Multi-Megahertz IPT Systems for Biomedical Devices Applications Modeling and Analysis of a Piezoelectric Stick-slip Energy Harvester Thermal energy harvesting through the fur of endothermic animals Mems Ion Sources For Spectroscopic Identification Of Gaseous And Liquid Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1