一种有效的从运动中确定结构的递归分解方法

Yanhua Li, M. Brooks
{"title":"一种有效的从运动中确定结构的递归分解方法","authors":"Yanhua Li, M. Brooks","doi":"10.1109/CVPR.1999.786930","DOIUrl":null,"url":null,"abstract":"A recursive method is presented for recovering 3D object shape and camera motion under orthography from an extended sequence of video images. This may be viewed as a natural extension of both the original and the sequential factorization methods. A critical aspect of these factorization approaches is the estimation of the so-called shape space, and they may in part be characterized by the manner in which this subspace is computed. If P points are tracked through F frames, the recursive least-squares method proposed in this paper updates the shape space with complexity O(P) per frame. In contrast, the sequential factorization method updates the shape space with complexity O(P/sup 2/) per frame. The original factorization method is intended to be used in batch mode using points tracked across all available frames. It effectively computes the shape space with complexity O(FP/sup 2/) after F frames. Unlike other methods, the recursive approach does not require the estimation or updating of a large measurement or covariance matrix. Experiments with real and synthetic image sequences confirm the recursive method's low computational complexity and good performance, and indicate that it is well suited to real-time applications.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient recursive factorization method for determining structure from motion\",\"authors\":\"Yanhua Li, M. Brooks\",\"doi\":\"10.1109/CVPR.1999.786930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recursive method is presented for recovering 3D object shape and camera motion under orthography from an extended sequence of video images. This may be viewed as a natural extension of both the original and the sequential factorization methods. A critical aspect of these factorization approaches is the estimation of the so-called shape space, and they may in part be characterized by the manner in which this subspace is computed. If P points are tracked through F frames, the recursive least-squares method proposed in this paper updates the shape space with complexity O(P) per frame. In contrast, the sequential factorization method updates the shape space with complexity O(P/sup 2/) per frame. The original factorization method is intended to be used in batch mode using points tracked across all available frames. It effectively computes the shape space with complexity O(FP/sup 2/) after F frames. Unlike other methods, the recursive approach does not require the estimation or updating of a large measurement or covariance matrix. Experiments with real and synthetic image sequences confirm the recursive method's low computational complexity and good performance, and indicate that it is well suited to real-time applications.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种从扩展的视频图像序列中恢复三维物体形状和摄像机运动的递归方法。这可以看作是原始分解方法和顺序分解方法的自然扩展。这些分解方法的一个关键方面是对所谓形状空间的估计,它们可能部分地由计算该子空间的方式来表征。如果在F帧中跟踪P个点,本文提出的递推最小二乘法以每帧O(P)的复杂度更新形状空间。相比之下,顺序分解方法以每帧0 (P/sup /)的复杂度更新形状空间。原始的分解方法旨在在批处理模式下使用所有可用帧中跟踪的点。它有效地计算了F帧后的形状空间,复杂度为0 (FP/sup 2/)。与其他方法不同,递归方法不需要估计或更新大型测量或协方差矩阵。对真实图像序列和合成图像序列的实验表明,该方法计算复杂度低,性能好,适合于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient recursive factorization method for determining structure from motion
A recursive method is presented for recovering 3D object shape and camera motion under orthography from an extended sequence of video images. This may be viewed as a natural extension of both the original and the sequential factorization methods. A critical aspect of these factorization approaches is the estimation of the so-called shape space, and they may in part be characterized by the manner in which this subspace is computed. If P points are tracked through F frames, the recursive least-squares method proposed in this paper updates the shape space with complexity O(P) per frame. In contrast, the sequential factorization method updates the shape space with complexity O(P/sup 2/) per frame. The original factorization method is intended to be used in batch mode using points tracked across all available frames. It effectively computes the shape space with complexity O(FP/sup 2/) after F frames. Unlike other methods, the recursive approach does not require the estimation or updating of a large measurement or covariance matrix. Experiments with real and synthetic image sequences confirm the recursive method's low computational complexity and good performance, and indicate that it is well suited to real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1