R. Getman, D. Green, K. Bala, Utkarsh Mall, Nehal Rawat, Sonia Appasamy, B. Hariharan
{"title":"追踪时尚趋势的机器学习(ML):记录社交媒体和t台上棒球帽的频率","authors":"R. Getman, D. Green, K. Bala, Utkarsh Mall, Nehal Rawat, Sonia Appasamy, B. Hariharan","doi":"10.1177/0887302X20931195","DOIUrl":null,"url":null,"abstract":"With the proliferation of digital photographs and the increasing digitization of historical imagery, fashion studies scholars must consider new methods for interpreting large data sets. Computational methods to analyze visual forms of big data have been underway in the field of computer science through computer vision, where computers are trained to “read” images through a process called machine learning. In this study, fashion historians and computer scientists collaborated to explore the practical potential of this emergent method by examining a trend related to one particular fashion item—the baseball cap—across two big data sets—the Vogue Runway database (2000–2018) and the Matzen et al. Streetstyle-27K data set (2013–2016). We illustrate one implementation of high-level concept recognition to map a fashion trend. Tracking trend frequency helps visualize larger patterns and cultural shifts while creating sociohistorical records of aesthetics, which benefits fashion scholars and industry alike.","PeriodicalId":47110,"journal":{"name":"Clothing and Textiles Research Journal","volume":"1 1","pages":"281 - 296"},"PeriodicalIF":2.4000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Learning (ML) for Tracking Fashion Trends: Documenting the Frequency of the Baseball Cap on Social Media and the Runway\",\"authors\":\"R. Getman, D. Green, K. Bala, Utkarsh Mall, Nehal Rawat, Sonia Appasamy, B. Hariharan\",\"doi\":\"10.1177/0887302X20931195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of digital photographs and the increasing digitization of historical imagery, fashion studies scholars must consider new methods for interpreting large data sets. Computational methods to analyze visual forms of big data have been underway in the field of computer science through computer vision, where computers are trained to “read” images through a process called machine learning. In this study, fashion historians and computer scientists collaborated to explore the practical potential of this emergent method by examining a trend related to one particular fashion item—the baseball cap—across two big data sets—the Vogue Runway database (2000–2018) and the Matzen et al. Streetstyle-27K data set (2013–2016). We illustrate one implementation of high-level concept recognition to map a fashion trend. Tracking trend frequency helps visualize larger patterns and cultural shifts while creating sociohistorical records of aesthetics, which benefits fashion scholars and industry alike.\",\"PeriodicalId\":47110,\"journal\":{\"name\":\"Clothing and Textiles Research Journal\",\"volume\":\"1 1\",\"pages\":\"281 - 296\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clothing and Textiles Research Journal\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/0887302X20931195\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clothing and Textiles Research Journal","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/0887302X20931195","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
Machine Learning (ML) for Tracking Fashion Trends: Documenting the Frequency of the Baseball Cap on Social Media and the Runway
With the proliferation of digital photographs and the increasing digitization of historical imagery, fashion studies scholars must consider new methods for interpreting large data sets. Computational methods to analyze visual forms of big data have been underway in the field of computer science through computer vision, where computers are trained to “read” images through a process called machine learning. In this study, fashion historians and computer scientists collaborated to explore the practical potential of this emergent method by examining a trend related to one particular fashion item—the baseball cap—across two big data sets—the Vogue Runway database (2000–2018) and the Matzen et al. Streetstyle-27K data set (2013–2016). We illustrate one implementation of high-level concept recognition to map a fashion trend. Tracking trend frequency helps visualize larger patterns and cultural shifts while creating sociohistorical records of aesthetics, which benefits fashion scholars and industry alike.
期刊介绍:
Published quarterly, Clothing & Textiles Research Journal strives to strengthen the research base in clothing and textiles, facilitate scholarly interchange, demonstrate the interdisciplinary nature of the field, and inspire further research. CTRJ publishes articles in the following areas: •Textiles, fiber, and polymer science •Aesthetics and design •Consumer Theories and Behavior •Social and psychological aspects of dress or educational issues •Historic and cultural aspects of dress •International/retailing/merchandising management and industry analysis