超低功耗多核生物医学处理器中电压缩放的混合存储架构

Daniele Bortolotti, Andrea Bartolini, C. Weis, D. Rossi, L. Benini
{"title":"超低功耗多核生物医学处理器中电压缩放的混合存储架构","authors":"Daniele Bortolotti, Andrea Bartolini, C. Weis, D. Rossi, L. Benini","doi":"10.7873/DATE.2014.182","DOIUrl":null,"url":null,"abstract":"Technology scaling enables today the design of sensor-based ultra-low cost chips well suited for emerging applications such as wireless body sensor networks, urban life and environment monitoring. Energy consumption is the key limiting factor of this up-coming revolution and memories are often the energy bottleneck mainly due to leakage power. This paper proposes an ultra-low power multi-core architecture targeting eHealth monitoring systems, where applications involve collection of sequences of slow biomedical signals and highly parallel computations at very low voltage. We propose a hybrid memory architecture that combines 6T-SRAM and 8T-SRAM operating in the same voltage domain and capable of dispatching at high voltage a normal operation and at low voltage a fully reliable small memory partition (8T) while the rest of the memory (6T) is state-retentive. Our architecture offers significant energy savings with a low area overhead in typical eHealth Compressed Sensing-based applications.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"210 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors\",\"authors\":\"Daniele Bortolotti, Andrea Bartolini, C. Weis, D. Rossi, L. Benini\",\"doi\":\"10.7873/DATE.2014.182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling enables today the design of sensor-based ultra-low cost chips well suited for emerging applications such as wireless body sensor networks, urban life and environment monitoring. Energy consumption is the key limiting factor of this up-coming revolution and memories are often the energy bottleneck mainly due to leakage power. This paper proposes an ultra-low power multi-core architecture targeting eHealth monitoring systems, where applications involve collection of sequences of slow biomedical signals and highly parallel computations at very low voltage. We propose a hybrid memory architecture that combines 6T-SRAM and 8T-SRAM operating in the same voltage domain and capable of dispatching at high voltage a normal operation and at low voltage a fully reliable small memory partition (8T) while the rest of the memory (6T) is state-retentive. Our architecture offers significant energy savings with a low area overhead in typical eHealth Compressed Sensing-based applications.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"210 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

技术扩展使今天基于传感器的超低成本芯片的设计非常适合新兴应用,如无线身体传感器网络,城市生活和环境监测。能源消耗是这场即将到来的革命的关键限制因素,而存储器往往是能源瓶颈,主要是由于泄漏功率。本文提出了一种针对电子健康监测系统的超低功耗多核架构,其中应用涉及慢速生物医学信号序列的收集和极低电压下的高度并行计算。我们提出了一种混合存储架构,该架构结合了在同一电压域中工作的6T- sram和8T- sram,能够在高压下调度正常操作,在低压下调度完全可靠的小内存分区(8T),而其余的内存(6T)保持状态。我们的架构在典型的基于eHealth压缩传感的应用中提供了显著的节能和低面积开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors
Technology scaling enables today the design of sensor-based ultra-low cost chips well suited for emerging applications such as wireless body sensor networks, urban life and environment monitoring. Energy consumption is the key limiting factor of this up-coming revolution and memories are often the energy bottleneck mainly due to leakage power. This paper proposes an ultra-low power multi-core architecture targeting eHealth monitoring systems, where applications involve collection of sequences of slow biomedical signals and highly parallel computations at very low voltage. We propose a hybrid memory architecture that combines 6T-SRAM and 8T-SRAM operating in the same voltage domain and capable of dispatching at high voltage a normal operation and at low voltage a fully reliable small memory partition (8T) while the rest of the memory (6T) is state-retentive. Our architecture offers significant energy savings with a low area overhead in typical eHealth Compressed Sensing-based applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple interpolants for linear arithmetic Modeling steep slope devices: From circuits to architectures Software-based Pauli tracking in fault-tolerant quantum circuits Using guided local search for adaptive resource reservation in large-scale embedded systems Emulation-based robustness assessment for automotive smart-power ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1