{"title":"碳纳米管应变传感悬臂梁","authors":"J. Tong, M. Priebe, Yu Sun","doi":"10.1109/MEMSYS.2007.4433135","DOIUrl":null,"url":null,"abstract":"This paper presents the design, fabrication, and testing results of silicon cantilevers with carbon nanotubes (CNTs) as active strain sensing elements. A batch microfabrication process was developed for device construction and packaging. Multi-walled carbon nanotubes (MWNTs) were dielectrophoretically assembled between electrodes. Based on the characterization results of 12 devices, the CNT-based cantilevers demonstrated a linear relationship between resistance changes and externally applied strain. The gauge factor ranged from 78.84 to 134.40 for four different microelectrode configurations.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"33 1","pages":"843-846"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Carbon nanotube-based strain sensing cantilevers\",\"authors\":\"J. Tong, M. Priebe, Yu Sun\",\"doi\":\"10.1109/MEMSYS.2007.4433135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, fabrication, and testing results of silicon cantilevers with carbon nanotubes (CNTs) as active strain sensing elements. A batch microfabrication process was developed for device construction and packaging. Multi-walled carbon nanotubes (MWNTs) were dielectrophoretically assembled between electrodes. Based on the characterization results of 12 devices, the CNT-based cantilevers demonstrated a linear relationship between resistance changes and externally applied strain. The gauge factor ranged from 78.84 to 134.40 for four different microelectrode configurations.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"33 1\",\"pages\":\"843-846\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents the design, fabrication, and testing results of silicon cantilevers with carbon nanotubes (CNTs) as active strain sensing elements. A batch microfabrication process was developed for device construction and packaging. Multi-walled carbon nanotubes (MWNTs) were dielectrophoretically assembled between electrodes. Based on the characterization results of 12 devices, the CNT-based cantilevers demonstrated a linear relationship between resistance changes and externally applied strain. The gauge factor ranged from 78.84 to 134.40 for four different microelectrode configurations.