纳米晶金刚石封盖改善氮化镓基HEMT性能

T. Anderson, K. Hobart, M. Tadjer, T. Feygelson, E. Imhoff, D. Meyer, D. Katzer, J. Hite, F. Kub, B. Pate, S. Binari, C. Eddy
{"title":"纳米晶金刚石封盖改善氮化镓基HEMT性能","authors":"T. Anderson, K. Hobart, M. Tadjer, T. Feygelson, E. Imhoff, D. Meyer, D. Katzer, J. Hite, F. Kub, B. Pate, S. Binari, C. Eddy","doi":"10.1109/DRC.2012.6256985","DOIUrl":null,"url":null,"abstract":"As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a \"gate after diamond\" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"43 1","pages":"155-156"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Improved GaN-based HEMT performance by nanocrystalline diamond capping\",\"authors\":\"T. Anderson, K. Hobart, M. Tadjer, T. Feygelson, E. Imhoff, D. Meyer, D. Katzer, J. Hite, F. Kub, B. Pate, S. Binari, C. Eddy\",\"doi\":\"10.1109/DRC.2012.6256985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a \\\"gate after diamond\\\" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.\",\"PeriodicalId\":6808,\"journal\":{\"name\":\"70th Device Research Conference\",\"volume\":\"43 1\",\"pages\":\"155-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"70th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2012.6256985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

氮化镓(GaN)作为一种宽带隙半导体,是下一代功率器件中极具吸引力的材料。迄今为止,基于氮化镓的高电子迁移率晶体管(hemt)的性能受到自热效应的限制(由于声子散射引起的高漏极场载流子速度降低导致漏极电流降低)。尽管意识到这一点,但由于在器件中靠近热源的地方放置高导热材料存在困难,因此减轻热损伤的尝试受到限制。热扩散方案包括在单晶或CVD金刚石上生长AIGaN/GaN,或使用纳米晶金刚石(NCD)覆盖完全加工的hemt。所有方法都存在HEMT性能降低或衬底尺寸受限的问题。最近,通过在热敏肖特基栅极之前沉积NCD,成功地证明了一种“金刚石后栅极”的方法可以改善该过程的热预算,并且还可以实现大面积金刚石的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved GaN-based HEMT performance by nanocrystalline diamond capping
As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancement-mode Al045Ga0.55N/Al0.3Ga0.7N High Electron Mobility Transistor with p-Al0.3Ga0.7N Gate CMOS-compatible Ti/Al ohmic contacts (R c ° C) Role of screening, heating, and dielectrics on high-field transport in graphene Electrical control of nuclear-spin-induced Hall voltage in an inverted InAs heterostructure Piezotronics and piezo-phototronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1