独立于平台的健壮查询处理

S. Karthik, J. Haritsa, Sreyash Kenkre, Vinayaka Pandit
{"title":"独立于平台的健壮查询处理","authors":"S. Karthik, J. Haritsa, Sreyash Kenkre, Vinayaka Pandit","doi":"10.1109/ICDE.2016.7498251","DOIUrl":null,"url":null,"abstract":"To address the classical selectivity estimation problem in databases, a radically different approach called PlanBouquet was recently proposed in [3], wherein the estimation process is completely abandoned and replaced with a calibrated discovery mechanism. The beneficial outcome of this new construction is that, for the first time, provable guarantees are obtained on worst-case performance, thereby facilitating robust query processing.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"4 1","pages":"325-336"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Platform-independent robust query processing\",\"authors\":\"S. Karthik, J. Haritsa, Sreyash Kenkre, Vinayaka Pandit\",\"doi\":\"10.1109/ICDE.2016.7498251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the classical selectivity estimation problem in databases, a radically different approach called PlanBouquet was recently proposed in [3], wherein the estimation process is completely abandoned and replaced with a calibrated discovery mechanism. The beneficial outcome of this new construction is that, for the first time, provable guarantees are obtained on worst-case performance, thereby facilitating robust query processing.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"4 1\",\"pages\":\"325-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

为了解决数据库中经典的选择性估计问题,最近在[3]中提出了一种完全不同的方法PlanBouquet,其中完全放弃了估计过程,取而代之的是校准的发现机制。这种新结构的有益结果是,首次获得了对最坏情况性能的可证明保证,从而促进了健壮的查询处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platform-independent robust query processing
To address the classical selectivity estimation problem in databases, a radically different approach called PlanBouquet was recently proposed in [3], wherein the estimation process is completely abandoned and replaced with a calibrated discovery mechanism. The beneficial outcome of this new construction is that, for the first time, provable guarantees are obtained on worst-case performance, thereby facilitating robust query processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1