现代法国诗歌的生成与RoBERTa和GPT-2

Intech Pub Date : 2022-12-06 DOI:10.48550/arXiv.2212.02911
Mika Hämäläinen, Khalid Alnajjar, T. Poibeau
{"title":"现代法国诗歌的生成与RoBERTa和GPT-2","authors":"Mika Hämäläinen, Khalid Alnajjar, T. Poibeau","doi":"10.48550/arXiv.2212.02911","DOIUrl":null,"url":null,"abstract":"We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .","PeriodicalId":13714,"journal":{"name":"Intech","volume":"7 1","pages":"12-16"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modern French Poetry Generation with RoBERTa and GPT-2\",\"authors\":\"Mika Hämäläinen, Khalid Alnajjar, T. Poibeau\",\"doi\":\"10.48550/arXiv.2212.02911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .\",\"PeriodicalId\":13714,\"journal\":{\"name\":\"Intech\",\"volume\":\"7 1\",\"pages\":\"12-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.02911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.02911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的法语现代诗歌生成神经模型。该模型由两个预先训练的神经模型组成,这些神经模型对诗歌生成任务进行了微调。该模型的编码器是基于RoBERTa的,解码器是基于GPT-2的。这样模型可以受益于RoBERTa优越的自然语言理解性能和GPT-2良好的自然语言生成性能。我们的评价表明,这种模式能够成功地创作出法国诗歌。在5分制中,人类评委对输出诗歌的典型性和情绪性给出了最低的3.57分,对可理解性给出了最高的3.79分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern French Poetry Generation with RoBERTa and GPT-2
We present a novel neural model for modern poetry gen- eration in French. The model consists of two pretrained neural models that are fine-tuned for the poem gener- ation task. The encoder of the model is a RoBERTa based one while the decoder is based on GPT-2. This way the model can benefit from the superior natural language understanding performance of RoBERTa and the good natural language generation performance of GPT-2. Our evaluation shows that the model can cre- ate French poetry successfully. On a 5 point scale, the lowest score of 3.57 was given by human judges to typ- icality and emotionality of the output poetry while the best score of 3.79 was given to understandability .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistem Aplikasi Layanan Panggilan Montir Berbasis Web untuk Memudahkan Pengendara Menemukan Montir Sistem Informasi Pengelolaan Sampah Rumah Tangga Berbasis Mobile Rancang Bangun Sistem Informasi Perpustakaan Berbasis Web Pada SMAN 10 OKU Aplikasi Edukasi Belajar ‘Joykidz’ Untuk Anak Usia 4 Hingga 6 Tahun Menggunakan MIT App Inventor Berbasis Android Perancangan Sistem Presensi Online Berbasis Granted Validitas Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1