基于实体嵌入和k均值聚类的门控循环单元机器健康建模

I. Amihai, M. Chioua, R. Gitzel, A. Kotriwala, Diego Pareschi, Guruprasad Sosale, Subanatarajan Subbiah
{"title":"基于实体嵌入和k均值聚类的门控循环单元机器健康建模","authors":"I. Amihai, M. Chioua, R. Gitzel, A. Kotriwala, Diego Pareschi, Guruprasad Sosale, Subanatarajan Subbiah","doi":"10.1109/INDIN.2018.8472065","DOIUrl":null,"url":null,"abstract":"We describe a machine learning approach for predicting machine health indicators two weeks into the future. The model developed uses a neural network architecture that incorporates sensor data inputs using gated recurrent units with metadata inputs using entity embeddings. Both inputs are then concatenated and fed to a fully connected neural network classifier. Furthermore, our classes are generated by clustering the continuous sensor values of the training data using K-Means. To validate the model we performed an ablation study in order to verify the effectiveness of each of the model’s components, and also compared our approach to the typical method of predicting continuous scalar values.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"257 1","pages":"212-217"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Modeling Machine Health Using Gated Recurrent Units with Entity Embeddings and K-Means Clustering\",\"authors\":\"I. Amihai, M. Chioua, R. Gitzel, A. Kotriwala, Diego Pareschi, Guruprasad Sosale, Subanatarajan Subbiah\",\"doi\":\"10.1109/INDIN.2018.8472065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a machine learning approach for predicting machine health indicators two weeks into the future. The model developed uses a neural network architecture that incorporates sensor data inputs using gated recurrent units with metadata inputs using entity embeddings. Both inputs are then concatenated and fed to a fully connected neural network classifier. Furthermore, our classes are generated by clustering the continuous sensor values of the training data using K-Means. To validate the model we performed an ablation study in order to verify the effectiveness of each of the model’s components, and also compared our approach to the typical method of predicting continuous scalar values.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"257 1\",\"pages\":\"212-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8472065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8472065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们描述了一种用于预测未来两周机器健康指标的机器学习方法。开发的模型使用神经网络架构,该架构使用门控循环单元将传感器数据输入与使用实体嵌入的元数据输入结合起来。然后将两个输入连接起来并馈送到一个完全连接的神经网络分类器。此外,我们的类是通过使用K-Means对训练数据的连续传感器值进行聚类生成的。为了验证该模型,我们进行了消融研究,以验证模型每个组成部分的有效性,并将我们的方法与预测连续标量值的典型方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Machine Health Using Gated Recurrent Units with Entity Embeddings and K-Means Clustering
We describe a machine learning approach for predicting machine health indicators two weeks into the future. The model developed uses a neural network architecture that incorporates sensor data inputs using gated recurrent units with metadata inputs using entity embeddings. Both inputs are then concatenated and fed to a fully connected neural network classifier. Furthermore, our classes are generated by clustering the continuous sensor values of the training data using K-Means. To validate the model we performed an ablation study in order to verify the effectiveness of each of the model’s components, and also compared our approach to the typical method of predicting continuous scalar values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1