基于SIFT的快速复制移动伪造检测方法

Hesham A. Alberry , Abdelfatah A. Hegazy , Gouda I. Salama
{"title":"基于SIFT的快速复制移动伪造检测方法","authors":"Hesham A. Alberry ,&nbsp;Abdelfatah A. Hegazy ,&nbsp;Gouda I. Salama","doi":"10.1016/j.fcij.2018.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Image forensics is an important area of research used to indicate if a particular image is original or subjected to any kind of tampering. Images are essential part of judgment in tribunals. For forensic analysis, image forgery-detection techniques used to identify the forged images. In this paper, an effective algorithm to indicate Copy Move Forgery in digital image presented. The Scale Invariant Feature Transform (SIFT) and Fuzzy C-means (FCM) for clustering are utilized in the proposed algorithm. A number of numerical experiments performed using the MICC-220 dataset. The authors created an additional dataset, which consisted of 353 color images. The proposed algorithm tested by using both datasets where the average detection time on the MICC-220 data set is reduced by 14.67% over the existing traditional SIFT-based algorithm. For the created dataset, the average detection time reduced by 15.91% over the existing traditional SIFT-based algorithm.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 2","pages":"Pages 159-165"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.03.001","citationCount":"3","resultStr":"{\"title\":\"A fast SIFT based method for copy move forgery detection\",\"authors\":\"Hesham A. Alberry ,&nbsp;Abdelfatah A. Hegazy ,&nbsp;Gouda I. Salama\",\"doi\":\"10.1016/j.fcij.2018.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image forensics is an important area of research used to indicate if a particular image is original or subjected to any kind of tampering. Images are essential part of judgment in tribunals. For forensic analysis, image forgery-detection techniques used to identify the forged images. In this paper, an effective algorithm to indicate Copy Move Forgery in digital image presented. The Scale Invariant Feature Transform (SIFT) and Fuzzy C-means (FCM) for clustering are utilized in the proposed algorithm. A number of numerical experiments performed using the MICC-220 dataset. The authors created an additional dataset, which consisted of 353 color images. The proposed algorithm tested by using both datasets where the average detection time on the MICC-220 data set is reduced by 14.67% over the existing traditional SIFT-based algorithm. For the created dataset, the average detection time reduced by 15.91% over the existing traditional SIFT-based algorithm.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"3 2\",\"pages\":\"Pages 159-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2018.03.001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728818300114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728818300114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像取证是一个重要的研究领域,用于指出一个特定的图像是原始的还是受到任何类型的篡改。图像是法庭审判的重要组成部分。对于法医分析,图像伪造检测技术用于识别伪造的图像。本文提出了一种有效的数字图像复制移动伪造检测算法。该算法利用尺度不变特征变换(SIFT)和模糊c均值(FCM)进行聚类。使用MICC-220数据集进行了一些数值实验。作者创建了一个额外的数据集,其中包括353张彩色图像。本文算法在两个数据集上进行了测试,在MICC-220数据集上的平均检测时间比现有的基于sift的传统算法缩短了14.67%。对于所创建的数据集,平均检测时间比现有的基于sift的传统算法减少了15.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast SIFT based method for copy move forgery detection

Image forensics is an important area of research used to indicate if a particular image is original or subjected to any kind of tampering. Images are essential part of judgment in tribunals. For forensic analysis, image forgery-detection techniques used to identify the forged images. In this paper, an effective algorithm to indicate Copy Move Forgery in digital image presented. The Scale Invariant Feature Transform (SIFT) and Fuzzy C-means (FCM) for clustering are utilized in the proposed algorithm. A number of numerical experiments performed using the MICC-220 dataset. The authors created an additional dataset, which consisted of 353 color images. The proposed algorithm tested by using both datasets where the average detection time on the MICC-220 data set is reduced by 14.67% over the existing traditional SIFT-based algorithm. For the created dataset, the average detection time reduced by 15.91% over the existing traditional SIFT-based algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1