{"title":"智能堵漏材料用于封堵大裂缝","authors":"M. Tabatabaei, A. Dahi Taleghani","doi":"10.2118/205873-ms","DOIUrl":null,"url":null,"abstract":"\n Lost circulation problems may result in a significant downtime, a considerable reduction of the rate of penetration, or even well control problems. Despite advances in manufacturing lost circulation materials (LCMs), some formations, like heavily fractured carbonates, have complete losses during drilling. We develop smart LCMs using shape memory polymers (SMPs), and program them thermo-mechanically to satisfy size limitations imposed by bottomhole assemblies (BHA). Elevated downhole temperatures act as an external trigger to recover the permanent shape of LCMs, which could expand ten times larger than the temporary (programmed) dimensions for deployment. Smart LCMs are a combination of various material categories such as granular, fibrous (one-dimensional or 1-D) and planar (two-dimensional or 2-D) configurations that resume to the original shape after exposure to high temperatures. The LCMs form different structures such as flatted pellet, disc-shaped, spider-shaped, and spindled, which, respectively, presents grains, 1-D fibers, 2-D stars, and 2-D lattices after recovery. A combination of the above categories attempt to build three-dimensional (3-D) plugging capabilities across various sized fractures.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Smart Lost Circulation Materials to Seal Large Fractures\",\"authors\":\"M. Tabatabaei, A. Dahi Taleghani\",\"doi\":\"10.2118/205873-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lost circulation problems may result in a significant downtime, a considerable reduction of the rate of penetration, or even well control problems. Despite advances in manufacturing lost circulation materials (LCMs), some formations, like heavily fractured carbonates, have complete losses during drilling. We develop smart LCMs using shape memory polymers (SMPs), and program them thermo-mechanically to satisfy size limitations imposed by bottomhole assemblies (BHA). Elevated downhole temperatures act as an external trigger to recover the permanent shape of LCMs, which could expand ten times larger than the temporary (programmed) dimensions for deployment. Smart LCMs are a combination of various material categories such as granular, fibrous (one-dimensional or 1-D) and planar (two-dimensional or 2-D) configurations that resume to the original shape after exposure to high temperatures. The LCMs form different structures such as flatted pellet, disc-shaped, spider-shaped, and spindled, which, respectively, presents grains, 1-D fibers, 2-D stars, and 2-D lattices after recovery. A combination of the above categories attempt to build three-dimensional (3-D) plugging capabilities across various sized fractures.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205873-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205873-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smart Lost Circulation Materials to Seal Large Fractures
Lost circulation problems may result in a significant downtime, a considerable reduction of the rate of penetration, or even well control problems. Despite advances in manufacturing lost circulation materials (LCMs), some formations, like heavily fractured carbonates, have complete losses during drilling. We develop smart LCMs using shape memory polymers (SMPs), and program them thermo-mechanically to satisfy size limitations imposed by bottomhole assemblies (BHA). Elevated downhole temperatures act as an external trigger to recover the permanent shape of LCMs, which could expand ten times larger than the temporary (programmed) dimensions for deployment. Smart LCMs are a combination of various material categories such as granular, fibrous (one-dimensional or 1-D) and planar (two-dimensional or 2-D) configurations that resume to the original shape after exposure to high temperatures. The LCMs form different structures such as flatted pellet, disc-shaped, spider-shaped, and spindled, which, respectively, presents grains, 1-D fibers, 2-D stars, and 2-D lattices after recovery. A combination of the above categories attempt to build three-dimensional (3-D) plugging capabilities across various sized fractures.