Ganes Raj Muthu Arumugam, S. Muthaiyah, Thein Oak Kyaw Zaw
{"title":"使用低功耗蓝牙解决方案优化患者周转时间","authors":"Ganes Raj Muthu Arumugam, S. Muthaiyah, Thein Oak Kyaw Zaw","doi":"10.18080/jtde.v10n4.615","DOIUrl":null,"url":null,"abstract":"Smart Healthcare can use the Internet of Things (IoT) to broaden the reach of digital healthcare by collecting patient data remotely using sensors. This can reduce Patient Turnaround Time (PTAT) and enable high-quality care to be provided. PTAT is the length of time from when a patient arrives at the hospital until they are allowed to return home. Malaysia's Ministry of Health claimed in 2016 that healthcare at government hospitals continues to encounter issues in providing high-quality care to patients, particularly in terms of the PTAT of patients who receive treatment versus those who are sent home without treatment. In this paper, we propose a Bluetooth Low Energy-based solution that optimizes PTAT using low calibrated transmission power, allowing hospitals to enable Real-time Patient Localization and Patient Movement Monitoring. The RSSI value is used to calculate the distance between a wearable device and the Access Points (AP) situated throughout the facility. When a patient passes an AP, data such as the wearable device name and RSSI value are taken and saved in a database, to determine the patient's location. A proof of concept was conducted using three AP points and 8 wearable devices to gauge distance measurement.","PeriodicalId":37752,"journal":{"name":"Australian Journal of Telecommunications and the Digital Economy","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Optimization of Patients’ Turnaround Time using Bluetooth Low Energy Based Solutions\",\"authors\":\"Ganes Raj Muthu Arumugam, S. Muthaiyah, Thein Oak Kyaw Zaw\",\"doi\":\"10.18080/jtde.v10n4.615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart Healthcare can use the Internet of Things (IoT) to broaden the reach of digital healthcare by collecting patient data remotely using sensors. This can reduce Patient Turnaround Time (PTAT) and enable high-quality care to be provided. PTAT is the length of time from when a patient arrives at the hospital until they are allowed to return home. Malaysia's Ministry of Health claimed in 2016 that healthcare at government hospitals continues to encounter issues in providing high-quality care to patients, particularly in terms of the PTAT of patients who receive treatment versus those who are sent home without treatment. In this paper, we propose a Bluetooth Low Energy-based solution that optimizes PTAT using low calibrated transmission power, allowing hospitals to enable Real-time Patient Localization and Patient Movement Monitoring. The RSSI value is used to calculate the distance between a wearable device and the Access Points (AP) situated throughout the facility. When a patient passes an AP, data such as the wearable device name and RSSI value are taken and saved in a database, to determine the patient's location. A proof of concept was conducted using three AP points and 8 wearable devices to gauge distance measurement.\",\"PeriodicalId\":37752,\"journal\":{\"name\":\"Australian Journal of Telecommunications and the Digital Economy\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Telecommunications and the Digital Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18080/jtde.v10n4.615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Telecommunications and the Digital Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18080/jtde.v10n4.615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Towards Optimization of Patients’ Turnaround Time using Bluetooth Low Energy Based Solutions
Smart Healthcare can use the Internet of Things (IoT) to broaden the reach of digital healthcare by collecting patient data remotely using sensors. This can reduce Patient Turnaround Time (PTAT) and enable high-quality care to be provided. PTAT is the length of time from when a patient arrives at the hospital until they are allowed to return home. Malaysia's Ministry of Health claimed in 2016 that healthcare at government hospitals continues to encounter issues in providing high-quality care to patients, particularly in terms of the PTAT of patients who receive treatment versus those who are sent home without treatment. In this paper, we propose a Bluetooth Low Energy-based solution that optimizes PTAT using low calibrated transmission power, allowing hospitals to enable Real-time Patient Localization and Patient Movement Monitoring. The RSSI value is used to calculate the distance between a wearable device and the Access Points (AP) situated throughout the facility. When a patient passes an AP, data such as the wearable device name and RSSI value are taken and saved in a database, to determine the patient's location. A proof of concept was conducted using three AP points and 8 wearable devices to gauge distance measurement.
期刊介绍:
The Journal of Telecommunications and the Digital Economy (JTDE) is an international, open-access, high quality, peer reviewed journal, indexed by Scopus and Google Scholar, covering innovative research and practice in Telecommunications, Digital Economy and Applications. The mission of JTDE is to further through publication the objective of advancing learning, knowledge and research worldwide. The JTDE publishes peer reviewed papers that may take the following form: *Research Paper - a paper making an original contribution to engineering knowledge. *Special Interest Paper – a report on significant aspects of a major or notable project. *Review Paper for specialists – an overview of a relevant area intended for specialists in the field covered. *Review Paper for non-specialists – an overview of a relevant area suitable for a reader with an electrical/electronics background. *Public Policy Discussion - a paper that identifies or discusses public policy and includes investigation of legislation, regulation and what is happening around the world including best practice *Tutorial Paper – a paper that explains an important subject or clarifies the approach to an area of design or investigation. *Technical Note – a technical note or letter to the Editors that is not sufficiently developed or extensive in scope to constitute a full paper. *Industry Case Study - a paper that provides details of industry practices utilising a case study to provide an understanding of what is occurring and how the outcomes have been achieved. *Discussion – a contribution to discuss a published paper to which the original author''s response will be sought. Historical - a paper covering a historical topic related to telecommunications or the digital economy.