结合wdr82的长链非编码RNA lncEry控制小鼠红细胞的分化和成熟

Shangda Yang, Guohuan Sun, Peng Wu, Cong Chen, Yijin Kuang, Ling Liu, Zhaofeng Zheng, Yi-Di He, Quan Gu, Ting Lu, Caiying Zhu, Fengjiao Wang, Fanglin Gou, Zining Yang, Xiangnan Zhao, Shiru Yuan, Liu Yang, Shihong Lu, Yapu Li, Xue Lv, F. Dong, Yanni Ma, Jia Yu, L. Ng, Lihong Shi, Jing Liu, Lei Shi, T. Cheng, Hui Cheng
{"title":"结合wdr82的长链非编码RNA lncEry控制小鼠红细胞的分化和成熟","authors":"Shangda Yang, Guohuan Sun, Peng Wu, Cong Chen, Yijin Kuang, Ling Liu, Zhaofeng Zheng, Yi-Di He, Quan Gu, Ting Lu, Caiying Zhu, Fengjiao Wang, Fanglin Gou, Zining Yang, Xiangnan Zhao, Shiru Yuan, Liu Yang, Shihong Lu, Yapu Li, Xue Lv, F. Dong, Yanni Ma, Jia Yu, L. Ng, Lihong Shi, Jing Liu, Lei Shi, T. Cheng, Hui Cheng","doi":"10.1101/2021.07.13.452142","DOIUrl":null,"url":null,"abstract":"Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long non-coding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA-sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was also the principal transcript that has not been reported before. LncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat-containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.","PeriodicalId":23015,"journal":{"name":"The Tokushima journal of experimental medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation\",\"authors\":\"Shangda Yang, Guohuan Sun, Peng Wu, Cong Chen, Yijin Kuang, Ling Liu, Zhaofeng Zheng, Yi-Di He, Quan Gu, Ting Lu, Caiying Zhu, Fengjiao Wang, Fanglin Gou, Zining Yang, Xiangnan Zhao, Shiru Yuan, Liu Yang, Shihong Lu, Yapu Li, Xue Lv, F. Dong, Yanni Ma, Jia Yu, L. Ng, Lihong Shi, Jing Liu, Lei Shi, T. Cheng, Hui Cheng\",\"doi\":\"10.1101/2021.07.13.452142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long non-coding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA-sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was also the principal transcript that has not been reported before. LncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat-containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.\",\"PeriodicalId\":23015,\"journal\":{\"name\":\"The Tokushima journal of experimental medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Tokushima journal of experimental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.07.13.452142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Tokushima journal of experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.07.13.452142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

造血分化受遗传和表观遗传调控因子控制。长链非编码rna (Long non-coding rna, lncRNAs)已被证实对正常造血有重要作用,但其在红细胞生成中的功能还有待进一步探索。我们通过深度rna测序分析了16个小鼠造血细胞群的转录组,并鉴定出一种新的lncRNA Gm15915,它在红细胞相关祖细胞和红细胞中高度表达。出于这个原因,我们将其命名为“能源”。我们还发现了一种新的lncEry亚型,这也是以前未报道过的主要转录本。lncRNA在调节红细胞分化和成熟中起着重要作用。在机制上,我们发现lncEry与WD重复蛋白82 (WDR82)相互作用,促进Klf1和珠蛋白基因的转录,从而分别控制红细胞生成的早期和晚期。这些发现表明lncEry在红细胞生成的转录调控中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation
Hematopoietic differentiation is controlled by both genetic and epigenetic regulators. Long non-coding RNAs (lncRNAs) have been demonstrated to be important for normal hematopoiesis, but their function in erythropoiesis needs to be further explored. We profiled the transcriptomes of 16 murine hematopoietic cell populations by deep RNA-sequencing and identified a novel lncRNA, Gm15915, that was highly expressed in erythroid-related progenitors and erythrocytes. For this reason, we named it lncEry. We also identified a novel lncEry isoform, which was also the principal transcript that has not been reported before. LncEry depletion impaired erythropoiesis, indicating the important role of the lncRNA in regulating erythroid differentiation and maturation. Mechanistically, we found that lncEry interacted with WD repeat-containing protein 82 (WDR82) to promote the transcription of Klf1 and globin genes and thus control the early and late stages of erythropoiesis, respectively. These findings identified lncEry as an important player in the transcriptional regulation of erythropoiesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potent human broadly SARS-CoV-2-neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. Chemokines form nanoparticles with DNA and can superinduce TLR-driven immune inflammation. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1