S. M. Sultan, S. H. Pu, S. Fishlock, L. H. Wah, H. Chong, J. McBride
{"title":"纳米晶石墨/p-Si肖特基二极管的电学行为","authors":"S. M. Sultan, S. H. Pu, S. Fishlock, L. H. Wah, H. Chong, J. McBride","doi":"10.1109/NANO.2016.7751379","DOIUrl":null,"url":null,"abstract":"The electrical characteristics of nanocrystalline graphite (NCG) on p-type Si Schottky diodes were investigated. The NCG/p-Si Schottky diodes were fabricated on a 6-inch wafer by metal-free catalyst plasma enhanced chemical vapour deposition (PECVD) and photolithography pattern transfer method. The NCG film consists of nanoscale grains of ~35 nm in size. The NCG/p-Si Schottky diode shows rectifying behavior with Schottky barrier height of 0.58 eV. This result in addition to nanosized grains can be exploited towards various chemical and gas sensor applications.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"370 1","pages":"307-310"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Electrical behavior of nanocrystalline graphite/p-Si Schottky diode\",\"authors\":\"S. M. Sultan, S. H. Pu, S. Fishlock, L. H. Wah, H. Chong, J. McBride\",\"doi\":\"10.1109/NANO.2016.7751379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrical characteristics of nanocrystalline graphite (NCG) on p-type Si Schottky diodes were investigated. The NCG/p-Si Schottky diodes were fabricated on a 6-inch wafer by metal-free catalyst plasma enhanced chemical vapour deposition (PECVD) and photolithography pattern transfer method. The NCG film consists of nanoscale grains of ~35 nm in size. The NCG/p-Si Schottky diode shows rectifying behavior with Schottky barrier height of 0.58 eV. This result in addition to nanosized grains can be exploited towards various chemical and gas sensor applications.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"370 1\",\"pages\":\"307-310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical behavior of nanocrystalline graphite/p-Si Schottky diode
The electrical characteristics of nanocrystalline graphite (NCG) on p-type Si Schottky diodes were investigated. The NCG/p-Si Schottky diodes were fabricated on a 6-inch wafer by metal-free catalyst plasma enhanced chemical vapour deposition (PECVD) and photolithography pattern transfer method. The NCG film consists of nanoscale grains of ~35 nm in size. The NCG/p-Si Schottky diode shows rectifying behavior with Schottky barrier height of 0.58 eV. This result in addition to nanosized grains can be exploited towards various chemical and gas sensor applications.