基于相应兴趣点向量一致性的指关节指纹验证

Min-Ki Kim, P. Flynn
{"title":"基于相应兴趣点向量一致性的指关节指纹验证","authors":"Min-Ki Kim, P. Flynn","doi":"10.1109/WACV.2014.6835996","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel finger-knuckle-print (FKP) verification method based on vector consistency among corresponding interest points (CIPs) detected from aligned finger images. We used two different approaches for reliable detection of CIPs; one method employs SIFT features and captures gradient directionality, and the other method employs phase correlation to represent the intensity field surrounding an interest point. The consistency of interframe displacements between pairs of matching CIPs in a match pair is used as a matching score. Such displacements will show consistency in a genuine match but not in an impostor match. Experimental results show that the proposed approach is effective in FKP verification.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"15 1","pages":"992-997"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finger-knuckle-print verification based on vector consistency of corresponding interest points\",\"authors\":\"Min-Ki Kim, P. Flynn\",\"doi\":\"10.1109/WACV.2014.6835996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel finger-knuckle-print (FKP) verification method based on vector consistency among corresponding interest points (CIPs) detected from aligned finger images. We used two different approaches for reliable detection of CIPs; one method employs SIFT features and captures gradient directionality, and the other method employs phase correlation to represent the intensity field surrounding an interest point. The consistency of interframe displacements between pairs of matching CIPs in a match pair is used as a matching score. Such displacements will show consistency in a genuine match but not in an impostor match. Experimental results show that the proposed approach is effective in FKP verification.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"15 1\",\"pages\":\"992-997\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6835996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6835996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于从对齐的手指图像中检测到的相应兴趣点(cip)之间的向量一致性的指关节指纹(FKP)验证方法。我们使用了两种不同的方法来可靠地检测cip;一种方法利用SIFT特征捕获梯度方向性,另一种方法利用相位相关表示兴趣点周围的强度场。匹配对中匹配cip对之间帧间位移的一致性被用作匹配分数。这样的位移将在真正的匹配中显示一致性,但在冒牌货匹配中则不然。实验结果表明,该方法在FKP验证中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finger-knuckle-print verification based on vector consistency of corresponding interest points
This paper proposes a novel finger-knuckle-print (FKP) verification method based on vector consistency among corresponding interest points (CIPs) detected from aligned finger images. We used two different approaches for reliable detection of CIPs; one method employs SIFT features and captures gradient directionality, and the other method employs phase correlation to represent the intensity field surrounding an interest point. The consistency of interframe displacements between pairs of matching CIPs in a match pair is used as a matching score. Such displacements will show consistency in a genuine match but not in an impostor match. Experimental results show that the proposed approach is effective in FKP verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1