10-18分数频率不确定度光学钟的研制指南

Moustafa Abdel-Hafiz, P. Ablewski, A. Al-Masoudi, H'ector 'Alvarez Mart'inez, P. Balling, G. Barwood, E. Benkler, M. Bober, M. Borkowski, W. Bowden, R. Ciuryło, H. Cybulski, A. Didier, Miroslav Dolevzal, S. Dorscher, S. Falke, R. Godun, R. Hamid, I. Hill, R. Hobson, N. Huntemann, Y. Coq, R. L. Targat, T. Legero, T. Lindvall, C. Lisdat, J. Lodewyck, H. Margolis, T. Mehlstaubler, E. Peik, L. Pelzer, M. Pizzocaro, B. Rauf, A. Rolland, N. Scharnhorst, M. Schioppo, P. Schmidt, R. Schwarz, cCaugri cSenel, N. Spethmann, U. Sterr, C. Tamm, J. Thomsen, A. Vianello, M. Zawada
{"title":"10-18分数频率不确定度光学钟的研制指南","authors":"Moustafa Abdel-Hafiz, P. Ablewski, A. Al-Masoudi, H'ector 'Alvarez Mart'inez, P. Balling, G. Barwood, E. Benkler, M. Bober, M. Borkowski, W. Bowden, R. Ciuryło, H. Cybulski, A. Didier, Miroslav Dolevzal, S. Dorscher, S. Falke, R. Godun, R. Hamid, I. Hill, R. Hobson, N. Huntemann, Y. Coq, R. L. Targat, T. Legero, T. Lindvall, C. Lisdat, J. Lodewyck, H. Margolis, T. Mehlstaubler, E. Peik, L. Pelzer, M. Pizzocaro, B. Rauf, A. Rolland, N. Scharnhorst, M. Schioppo, P. Schmidt, R. Schwarz, cCaugri cSenel, N. Spethmann, U. Sterr, C. Tamm, J. Thomsen, A. Vianello, M. Zawada","doi":"10.15488/5553","DOIUrl":null,"url":null,"abstract":"There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the $10^{-18}$ range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project \"Optical clocks with $1 \\times 10^{-18}$ uncertainty\" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"361 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Guidelines for developing optical clocks with 10-18 fractional frequency uncertainty\",\"authors\":\"Moustafa Abdel-Hafiz, P. Ablewski, A. Al-Masoudi, H'ector 'Alvarez Mart'inez, P. Balling, G. Barwood, E. Benkler, M. Bober, M. Borkowski, W. Bowden, R. Ciuryło, H. Cybulski, A. Didier, Miroslav Dolevzal, S. Dorscher, S. Falke, R. Godun, R. Hamid, I. Hill, R. Hobson, N. Huntemann, Y. Coq, R. L. Targat, T. Legero, T. Lindvall, C. Lisdat, J. Lodewyck, H. Margolis, T. Mehlstaubler, E. Peik, L. Pelzer, M. Pizzocaro, B. Rauf, A. Rolland, N. Scharnhorst, M. Schioppo, P. Schmidt, R. Schwarz, cCaugri cSenel, N. Spethmann, U. Sterr, C. Tamm, J. Thomsen, A. Vianello, M. Zawada\",\"doi\":\"10.15488/5553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the $10^{-18}$ range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project \\\"Optical clocks with $1 \\\\times 10^{-18}$ uncertainty\\\" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"361 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15488/5553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15488/5553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

自20世纪70年代首次提出对捕获的单离子进行精密光谱学以来,光学频率标准的性能已经取得了巨大的进步。当今领先的光学标准的估计分数频率不确定度目前在$10^{-18}$范围内,大约比最好的铯主频率标准好两个数量级。这种卓越的精度和稳定性导致越来越多的研究小组开发光学时钟。虽然已经存在涵盖该主题的优秀评论论文,但需要更多实用指南作为补充。因此,本文的目的是为从事光学时钟领域的研究人员提供技术指导。目标受众包括想要建立光学时钟(或其子系统)的国家计量研究所(NMIs)以及进入该领域的博士生和博士后。另一个潜在的受众是具有原子物理学和原子或离子捕获经验的学术团体,但在时间和频率计量以及光学时钟要求方面的经验较少。这些准则源自EMPIR项目“1 \ × 10^{-18}$不确定性的光学时钟”(OC18)的范围。因此,尽管世界各地都在进行类似的工作,但这些例子都来自欧洲的实验室。OC18的目标是通过改进每一个必要的子系统来推动光学时钟的发展:超稳定激光器、中性原子和单离子阱,以及询问技术。本文档分享了OC18项目联盟获得的知识,并就这些方面提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guidelines for developing optical clocks with 10-18 fractional frequency uncertainty
There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the $10^{-18}$ range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with $1 \times 10^{-18}$ uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1