Yanhua Liu, Jiaqi Li, Baoxu Liu, Xiaoling Gao, Ximeng Liu
{"title":"基于图像分析的恶意软件识别方法","authors":"Yanhua Liu, Jiaqi Li, Baoxu Liu, Xiaoling Gao, Ximeng Liu","doi":"10.1109/ITME53901.2021.00041","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a malware identification method employed by image analysis and generative adversarial networks, designed to solve the problems of increasingly sophisticated attack forms, insufficient sample data in malware. Specifically, we first generate fixed-size gray images of malware, which neither disassembly nor code execution is required for identification. Moreover, we introduce generative adversarial networks into malware identification for few samples scenarios and malware variants. Through the game training of generator and discriminator, the malware detection model is obtained from the discriminator and the samples are generated by the generator for data augment. Finally, we demonstrate that the proposed method is efficient and feasible using extensive experiments.","PeriodicalId":6774,"journal":{"name":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","volume":"73 1","pages":"157-161"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Malware Identification Method Based on Image Analysis\",\"authors\":\"Yanhua Liu, Jiaqi Li, Baoxu Liu, Xiaoling Gao, Ximeng Liu\",\"doi\":\"10.1109/ITME53901.2021.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a malware identification method employed by image analysis and generative adversarial networks, designed to solve the problems of increasingly sophisticated attack forms, insufficient sample data in malware. Specifically, we first generate fixed-size gray images of malware, which neither disassembly nor code execution is required for identification. Moreover, we introduce generative adversarial networks into malware identification for few samples scenarios and malware variants. Through the game training of generator and discriminator, the malware detection model is obtained from the discriminator and the samples are generated by the generator for data augment. Finally, we demonstrate that the proposed method is efficient and feasible using extensive experiments.\",\"PeriodicalId\":6774,\"journal\":{\"name\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"volume\":\"73 1\",\"pages\":\"157-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITME53901.2021.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME53901.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Malware Identification Method Based on Image Analysis
In this paper, we propose a malware identification method employed by image analysis and generative adversarial networks, designed to solve the problems of increasingly sophisticated attack forms, insufficient sample data in malware. Specifically, we first generate fixed-size gray images of malware, which neither disassembly nor code execution is required for identification. Moreover, we introduce generative adversarial networks into malware identification for few samples scenarios and malware variants. Through the game training of generator and discriminator, the malware detection model is obtained from the discriminator and the samples are generated by the generator for data augment. Finally, we demonstrate that the proposed method is efficient and feasible using extensive experiments.