基于声学特征的轻度痴呆患者识别机器学习模型

Kazu Nishikawa, Kuwahara Akihiro, Rin Hirakawa, Hideaki Kawano, Yoshihisa Nakatoh
{"title":"基于声学特征的轻度痴呆患者识别机器学习模型","authors":"Kazu Nishikawa,&nbsp;Kuwahara Akihiro,&nbsp;Rin Hirakawa,&nbsp;Hideaki Kawano,&nbsp;Yoshihisa Nakatoh","doi":"10.1016/j.cogr.2021.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>In previous research on dementia discrimination by voice, a method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients (MCI). Therefore, we propose a dementia discrimination system based on the analysis of vowel utterance features. The analysis results indicated that some cases of dementia appeared in the voice of mild dementia patients. These results can also be used as an index for future improvement of speech sounds in dementia. Taking advantage of these results, we propose an ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is better than the state-of-the-art methods.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 21-29"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000288/pdfft?md5=01f437a574b872e24a624b0dbf0fd73d&pid=1-s2.0-S2667241321000288-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Machine learning model for discrimination of mild dementia patients using acoustic features\",\"authors\":\"Kazu Nishikawa,&nbsp;Kuwahara Akihiro,&nbsp;Rin Hirakawa,&nbsp;Hideaki Kawano,&nbsp;Yoshihisa Nakatoh\",\"doi\":\"10.1016/j.cogr.2021.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In previous research on dementia discrimination by voice, a method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients (MCI). Therefore, we propose a dementia discrimination system based on the analysis of vowel utterance features. The analysis results indicated that some cases of dementia appeared in the voice of mild dementia patients. These results can also be used as an index for future improvement of speech sounds in dementia. Taking advantage of these results, we propose an ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is better than the state-of-the-art methods.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 21-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241321000288/pdfft?md5=01f437a574b872e24a624b0dbf0fd73d&pid=1-s2.0-S2667241321000288-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241321000288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241321000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在以往的语音识别痴呆症的研究中,提出了一种利用机器学习的多种声学特征的方法。然而,他们并没有关注轻度痴呆患者(MCI)的言语分析。因此,我们提出了一种基于元音语音特征分析的痴呆症识别系统。分析结果表明,部分痴呆病例出现在轻度痴呆患者的语音中。这些结果也可以作为未来痴呆症患者语音改善的指标。利用这些结果,我们提出了一种基于统计声学特征分类器和变压器模型神经网络的集成识别系统,其f值为0.907,优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning model for discrimination of mild dementia patients using acoustic features

In previous research on dementia discrimination by voice, a method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients (MCI). Therefore, we propose a dementia discrimination system based on the analysis of vowel utterance features. The analysis results indicated that some cases of dementia appeared in the voice of mild dementia patients. These results can also be used as an index for future improvement of speech sounds in dementia. Taking advantage of these results, we propose an ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is better than the state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1