Z.J Deng , H Zhang , N Yoshikawa , U Ghoshal , E Fang , A Flores , L Zheng , S.R Whiteley , T Van Duzer
{"title":"采用hybridCMOS-RSFQ技术的内存处理器接口","authors":"Z.J Deng , H Zhang , N Yoshikawa , U Ghoshal , E Fang , A Flores , L Zheng , S.R Whiteley , T Van Duzer","doi":"10.1016/S0964-1807(98)00077-5","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of high density memories at 4<!--> <!-->K has severely constrained the applications of digital Josephson electronics. Superconductor–semiconductor hybrid technology can take advantage of the high speed of a superconductor processor and the high density of a semiconductor memory and make superconducting electronics applicable. Currently we are developing a hybrid memory system to achieve low power (135 mW) and high speed (128 Gb/s) data access between a 16 GHz 8-bit superconducting rapid single flux quantum (RSFQ) vector processor and a 512 kbit complimentary metal-oxide silicon (CMOS) memory system. In this paper, we give a detailed description of both the high-level system organization and low-level circuit design, as well as simulation and test results for some circuit components of this hybrid RSFQ–CMOS memory-processor interface.</p></div>","PeriodicalId":100110,"journal":{"name":"Applied Superconductivity","volume":"6 7","pages":"Pages 355-360"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0964-1807(98)00077-5","citationCount":"0","resultStr":"{\"title\":\"Memory-processor interface with hybridCMOS-RSFQ echnology\",\"authors\":\"Z.J Deng , H Zhang , N Yoshikawa , U Ghoshal , E Fang , A Flores , L Zheng , S.R Whiteley , T Van Duzer\",\"doi\":\"10.1016/S0964-1807(98)00077-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lack of high density memories at 4<!--> <!-->K has severely constrained the applications of digital Josephson electronics. Superconductor–semiconductor hybrid technology can take advantage of the high speed of a superconductor processor and the high density of a semiconductor memory and make superconducting electronics applicable. Currently we are developing a hybrid memory system to achieve low power (135 mW) and high speed (128 Gb/s) data access between a 16 GHz 8-bit superconducting rapid single flux quantum (RSFQ) vector processor and a 512 kbit complimentary metal-oxide silicon (CMOS) memory system. In this paper, we give a detailed description of both the high-level system organization and low-level circuit design, as well as simulation and test results for some circuit components of this hybrid RSFQ–CMOS memory-processor interface.</p></div>\",\"PeriodicalId\":100110,\"journal\":{\"name\":\"Applied Superconductivity\",\"volume\":\"6 7\",\"pages\":\"Pages 355-360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0964-1807(98)00077-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964180798000775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964180798000775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memory-processor interface with hybridCMOS-RSFQ echnology
The lack of high density memories at 4 K has severely constrained the applications of digital Josephson electronics. Superconductor–semiconductor hybrid technology can take advantage of the high speed of a superconductor processor and the high density of a semiconductor memory and make superconducting electronics applicable. Currently we are developing a hybrid memory system to achieve low power (135 mW) and high speed (128 Gb/s) data access between a 16 GHz 8-bit superconducting rapid single flux quantum (RSFQ) vector processor and a 512 kbit complimentary metal-oxide silicon (CMOS) memory system. In this paper, we give a detailed description of both the high-level system organization and low-level circuit design, as well as simulation and test results for some circuit components of this hybrid RSFQ–CMOS memory-processor interface.