基于正交域PSNR的水印嵌入强度估计

Chen Jie, Bin Huang, Jian Mao
{"title":"基于正交域PSNR的水印嵌入强度估计","authors":"Chen Jie, Bin Huang, Jian Mao","doi":"10.12783/dtetr/mcaee2020/35020","DOIUrl":null,"url":null,"abstract":"Abstract. Based on the relation of points and vectors in Euclid Space, in this paper an image is regarded as a point in Euclid Space, and a watermarking as a vector. Then this paper presents how to estimate the embedding strength of watermarking according to the characteristic of the PSNR of the watermarked digital image in orthogonal domain. Experimental results show that the formula of the embedding strength is accurate and has minor errors.","PeriodicalId":11264,"journal":{"name":"DEStech Transactions on Engineering and Technology Research","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Estimation of Watermarking Embedding Strength Based on PSNR in Orthogonal Domain\",\"authors\":\"Chen Jie, Bin Huang, Jian Mao\",\"doi\":\"10.12783/dtetr/mcaee2020/35020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Based on the relation of points and vectors in Euclid Space, in this paper an image is regarded as a point in Euclid Space, and a watermarking as a vector. Then this paper presents how to estimate the embedding strength of watermarking according to the characteristic of the PSNR of the watermarked digital image in orthogonal domain. Experimental results show that the formula of the embedding strength is accurate and has minor errors.\",\"PeriodicalId\":11264,\"journal\":{\"name\":\"DEStech Transactions on Engineering and Technology Research\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Engineering and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dtetr/mcaee2020/35020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dtetr/mcaee2020/35020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文根据欧几里得空间中点与向量的关系,将图像视为欧几里得空间中的点,将水印视为向量。然后根据水印图像在正交域的PSNR特征估计水印的嵌入强度。实验结果表明,该公式准确,误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Estimation of Watermarking Embedding Strength Based on PSNR in Orthogonal Domain
Abstract. Based on the relation of points and vectors in Euclid Space, in this paper an image is regarded as a point in Euclid Space, and a watermarking as a vector. Then this paper presents how to estimate the embedding strength of watermarking according to the characteristic of the PSNR of the watermarked digital image in orthogonal domain. Experimental results show that the formula of the embedding strength is accurate and has minor errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Competitiveness of High-Tech Industry in Nanjing Based on Porter Diamond Model Construction and Design of All-Media Digital Textbook Design of 3D Model Database of Substation Equipment Based on Access Software Design of Deicing Device for Air Vent of Cold Storage Evaluating the Collaborative Innovation Performance of Advanced Manufacturing Industry and Modern Service Industry Based on Extension Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1