基于模拟存储器的图卷积网络的实现

Daqin Chen, Zongwei Wang, Shengyu Bao, Yimao Cai, Ru Huang
{"title":"基于模拟存储器的图卷积网络的实现","authors":"Daqin Chen, Zongwei Wang, Shengyu Bao, Yimao Cai, Ru Huang","doi":"10.1109/CSTIC49141.2020.9282441","DOIUrl":null,"url":null,"abstract":"In this work, the implementation of Graph Convolutional Network (GCN) based on resistive switching memory is demonstrated through simulation. After training, the RRAM-based GCN can process a semi-supervised graph classification task. Further, the impacts of read noises and circuit bit-precision on the performance of GCN are analyzed. Results show the proposed GCN can reach high accuracy when bit-precisions; 4-bit. Moreover, read noise can severely affect accuracy.","PeriodicalId":6848,"journal":{"name":"2020 China Semiconductor Technology International Conference (CSTIC)","volume":"46 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of Graph Convolution Network Based on Analog Rram\",\"authors\":\"Daqin Chen, Zongwei Wang, Shengyu Bao, Yimao Cai, Ru Huang\",\"doi\":\"10.1109/CSTIC49141.2020.9282441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the implementation of Graph Convolutional Network (GCN) based on resistive switching memory is demonstrated through simulation. After training, the RRAM-based GCN can process a semi-supervised graph classification task. Further, the impacts of read noises and circuit bit-precision on the performance of GCN are analyzed. Results show the proposed GCN can reach high accuracy when bit-precisions; 4-bit. Moreover, read noise can severely affect accuracy.\",\"PeriodicalId\":6848,\"journal\":{\"name\":\"2020 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"46 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC49141.2020.9282441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC49141.2020.9282441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过仿真演示了基于电阻式开关存储器的图形卷积网络(GCN)的实现。经过训练,基于rram的GCN可以处理半监督图分类任务。进一步分析了读噪声和电路位精度对GCN性能的影响。结果表明,在位精度较高的情况下,GCN可以达到较高的精度;4比特。此外,读取噪声会严重影响准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of Graph Convolution Network Based on Analog Rram
In this work, the implementation of Graph Convolutional Network (GCN) based on resistive switching memory is demonstrated through simulation. After training, the RRAM-based GCN can process a semi-supervised graph classification task. Further, the impacts of read noises and circuit bit-precision on the performance of GCN are analyzed. Results show the proposed GCN can reach high accuracy when bit-precisions; 4-bit. Moreover, read noise can severely affect accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Bonded Ball Shape on Gold Wire Bonding Quality Based on ANSYS/LS-DYNA Simulation Optimization on Deposition of Aluminum Nitride by Pulsed Direct Current Reactive Magnetron Sputtering A Novel Vertical Closed-Loop Control Method for High Generation TFT Lithography Machine Surface Smoothing and Roughening Effects of High-K Dielectric Materials Deposited by Atomic Layer Deposition and Their Significance for MIM Capacitors Used in Dram Technology Part II A Simulation Study for Typical Design Rule Patterns and Stochastic Printing Failures in a 5 nm Logic Process with EUV Lithography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1