Similade A. Adeodun, A. Sangodoyin, M. B. Ogundiran
{"title":"从分类的木材废料中优化生物炭产量,作为燃烧成灰的可持续替代品","authors":"Similade A. Adeodun, A. Sangodoyin, M. B. Ogundiran","doi":"10.2478/eces-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Wood wastes are one of the leading contributors of greenhouse gases cum climate change. While the burning of wood wastes results in CO2 emission, decomposition generates methane. In place of these emissions, wood wastes can be converted into biochars which have a lot of novel applications. However, low biochar yield was the common limitation of wood wastes, essentially, due to a mixture of different classifications of trees that pyrolyse at different conditions. In this study, biochar yield from sorted wood wastes was optimised by varying pyrolysis temperature and time. Power consumption, cost, and carbon footprint of the optimised biochar and ash were compared for both hydropower grid and diesel generator scenarios. Optimal pyrolysis yields were 33.6 % (400 °C), 29.4 % (350 °C) and 18.5 % (400 °C) respectively for hardwood sawdust char (HSC), softwood sawdust char (SSC), and mixed sawdust char (MSC) at 2 hours duration for all materials. The CO2 emissions from ash were 2.49 kg and 19.0 kg respectively for grid and diesel power supply. The diesel generator power was 17 times more expensive than grid power for wood wastes pyrolysis. Wood wastes have better biochar yield when charred homogenously; they have a smaller carbon footprint and are cheaper when produced with power from the grid. Wood wastes in place of being burnt can be processed as inexpensive and environment-friendly biochar.","PeriodicalId":11395,"journal":{"name":"Ecological Chemistry and Engineering S","volume":"42 1","pages":"15 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimisation of Biochar Yield from Sorted Wood Wastes as Sustainable Alternatives to Burning to Ash\",\"authors\":\"Similade A. Adeodun, A. Sangodoyin, M. B. Ogundiran\",\"doi\":\"10.2478/eces-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wood wastes are one of the leading contributors of greenhouse gases cum climate change. While the burning of wood wastes results in CO2 emission, decomposition generates methane. In place of these emissions, wood wastes can be converted into biochars which have a lot of novel applications. However, low biochar yield was the common limitation of wood wastes, essentially, due to a mixture of different classifications of trees that pyrolyse at different conditions. In this study, biochar yield from sorted wood wastes was optimised by varying pyrolysis temperature and time. Power consumption, cost, and carbon footprint of the optimised biochar and ash were compared for both hydropower grid and diesel generator scenarios. Optimal pyrolysis yields were 33.6 % (400 °C), 29.4 % (350 °C) and 18.5 % (400 °C) respectively for hardwood sawdust char (HSC), softwood sawdust char (SSC), and mixed sawdust char (MSC) at 2 hours duration for all materials. The CO2 emissions from ash were 2.49 kg and 19.0 kg respectively for grid and diesel power supply. The diesel generator power was 17 times more expensive than grid power for wood wastes pyrolysis. Wood wastes have better biochar yield when charred homogenously; they have a smaller carbon footprint and are cheaper when produced with power from the grid. Wood wastes in place of being burnt can be processed as inexpensive and environment-friendly biochar.\",\"PeriodicalId\":11395,\"journal\":{\"name\":\"Ecological Chemistry and Engineering S\",\"volume\":\"42 1\",\"pages\":\"15 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Chemistry and Engineering S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/eces-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Chemistry and Engineering S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/eces-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimisation of Biochar Yield from Sorted Wood Wastes as Sustainable Alternatives to Burning to Ash
Abstract Wood wastes are one of the leading contributors of greenhouse gases cum climate change. While the burning of wood wastes results in CO2 emission, decomposition generates methane. In place of these emissions, wood wastes can be converted into biochars which have a lot of novel applications. However, low biochar yield was the common limitation of wood wastes, essentially, due to a mixture of different classifications of trees that pyrolyse at different conditions. In this study, biochar yield from sorted wood wastes was optimised by varying pyrolysis temperature and time. Power consumption, cost, and carbon footprint of the optimised biochar and ash were compared for both hydropower grid and diesel generator scenarios. Optimal pyrolysis yields were 33.6 % (400 °C), 29.4 % (350 °C) and 18.5 % (400 °C) respectively for hardwood sawdust char (HSC), softwood sawdust char (SSC), and mixed sawdust char (MSC) at 2 hours duration for all materials. The CO2 emissions from ash were 2.49 kg and 19.0 kg respectively for grid and diesel power supply. The diesel generator power was 17 times more expensive than grid power for wood wastes pyrolysis. Wood wastes have better biochar yield when charred homogenously; they have a smaller carbon footprint and are cheaper when produced with power from the grid. Wood wastes in place of being burnt can be processed as inexpensive and environment-friendly biochar.