植物油和矿物油的介电分析

J. Ulrych, M. Svoboda, R. Polanský, J. Pihera
{"title":"植物油和矿物油的介电分析","authors":"J. Ulrych, M. Svoboda, R. Polanský, J. Pihera","doi":"10.1109/ICDL.2014.6893085","DOIUrl":null,"url":null,"abstract":"This paper deals with analysis and comparison of the specific dielectric properties and chemical structure of sunflower, rapeseed and commonly used transformer mineral oil. The measured sunflower and rapeseed oils are natural ester molecules with a triglyceride structure and have mainly excellent fire resistance and biodegradability. The measured common mineral oil is produced from mixture of hydrocarbons from crude oil and belongs to the group of naphthenic oils consisting mainly of cycloalkanes and is relatively flammable and dangerous for living environment. The measurement was performed by means of the dielectric spectroscopy method. The real and imaginary parts of complex permittivity of measured samples were analyzed in a frequency range from 50 mHz to 100 kHz and in temperature range from -50 °C to +90 °C. The measured spectrums displayed relaxation processes (α and β) as well as the conductive component (σ). The results showed that the measured dielectric properties of the investigated vegetable oils are very similar to each other in the evaluated frequency range, but differs from the common mineral oil properties. The common mineral oil had these properties much better than the sunflower and rapeseed oils. Adapted mixtures of vegetable and mineral oils with suitable inhibitors can be considered to using as an alternative insulation liquid into power transformers instead of mineral oils.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"36 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Dielectric analysis of vegetable and mineral oils\",\"authors\":\"J. Ulrych, M. Svoboda, R. Polanský, J. Pihera\",\"doi\":\"10.1109/ICDL.2014.6893085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with analysis and comparison of the specific dielectric properties and chemical structure of sunflower, rapeseed and commonly used transformer mineral oil. The measured sunflower and rapeseed oils are natural ester molecules with a triglyceride structure and have mainly excellent fire resistance and biodegradability. The measured common mineral oil is produced from mixture of hydrocarbons from crude oil and belongs to the group of naphthenic oils consisting mainly of cycloalkanes and is relatively flammable and dangerous for living environment. The measurement was performed by means of the dielectric spectroscopy method. The real and imaginary parts of complex permittivity of measured samples were analyzed in a frequency range from 50 mHz to 100 kHz and in temperature range from -50 °C to +90 °C. The measured spectrums displayed relaxation processes (α and β) as well as the conductive component (σ). The results showed that the measured dielectric properties of the investigated vegetable oils are very similar to each other in the evaluated frequency range, but differs from the common mineral oil properties. The common mineral oil had these properties much better than the sunflower and rapeseed oils. Adapted mixtures of vegetable and mineral oils with suitable inhibitors can be considered to using as an alternative insulation liquid into power transformers instead of mineral oils.\",\"PeriodicalId\":6523,\"journal\":{\"name\":\"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"36 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2014.6893085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文对向日葵、菜籽油和常用变压器矿物油的介电特性和化学结构进行了分析比较。所测的葵花籽油和菜籽油是具有甘油三酯结构的天然酯分子,主要具有优异的耐火性和生物降解性。所测的普通矿物油是由原油中的碳氢化合物混合而成的,属于以环烷烃为主的环烷类油,相对易燃,对生活环境具有危险性。采用介电光谱法进行测量。在50 mHz ~ 100 kHz的频率范围和-50℃~ +90℃的温度范围内,分析了测量样品复介电常数的实部和虚部。测得的光谱显示了弛豫过程(α和β)以及导电分量(σ)。结果表明,所测植物油的介电性能在评估频率范围内非常相似,但与普通矿物油的介电性能不同。普通矿物油具有比葵花籽油和菜籽油更好的这些特性。植物油和矿物油与适当抑制剂的适应混合物可以考虑用作电力变压器替代矿物油的绝缘液体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dielectric analysis of vegetable and mineral oils
This paper deals with analysis and comparison of the specific dielectric properties and chemical structure of sunflower, rapeseed and commonly used transformer mineral oil. The measured sunflower and rapeseed oils are natural ester molecules with a triglyceride structure and have mainly excellent fire resistance and biodegradability. The measured common mineral oil is produced from mixture of hydrocarbons from crude oil and belongs to the group of naphthenic oils consisting mainly of cycloalkanes and is relatively flammable and dangerous for living environment. The measurement was performed by means of the dielectric spectroscopy method. The real and imaginary parts of complex permittivity of measured samples were analyzed in a frequency range from 50 mHz to 100 kHz and in temperature range from -50 °C to +90 °C. The measured spectrums displayed relaxation processes (α and β) as well as the conductive component (σ). The results showed that the measured dielectric properties of the investigated vegetable oils are very similar to each other in the evaluated frequency range, but differs from the common mineral oil properties. The common mineral oil had these properties much better than the sunflower and rapeseed oils. Adapted mixtures of vegetable and mineral oils with suitable inhibitors can be considered to using as an alternative insulation liquid into power transformers instead of mineral oils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the thermal endurance of transformer oil by structural analyses Energy spectrum of vacancies and nanobubbles in condense matter: Crystal melting Methods for monitoring age-related changes in transformer oils Electrohydrodynamic motion due to space-charge limited injection of charges in cyclohexane The effect of surface treatment of silica nanoparticles on the breakdown strength of mineral oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1