{"title":"源内碰撞诱导解离质谱分析氨基酸的手性分化。","authors":"Xianglei Kong, Zhaiyi Huo, W. Zhai","doi":"10.5702/massspectrometry.S0031","DOIUrl":null,"url":null,"abstract":"Chiral recognition of d- and l-amino acids is achieved by a method combining electrospray ionization (ESI) and in-source collision-induced dissociation (CID) mass spectrometry (MS). Trimeric cluster ions [Cu(II)(A)(ref)2-H](+) are formed by ESI of mixtures of d- or l-analyte amino acid (A), chiral reference (ref) and CuSO4. By increasing the applied voltage in the ESI source region, the trimeric ions become unstable and dissociate progressively. Thus chiral differentiation of the analyte can be achieved by comparing the dependence of their relative intensities to a reference ion on applied voltages. The method does not need MS/MS technique, thus can be readily performed on single-stage MS instruments by turning the voltage of sampling cone.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"250 1","pages":"S0031"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chiral Differentiation of Amino Acids by In-Source Collision-Induced Dissociation Mass Spectrometry.\",\"authors\":\"Xianglei Kong, Zhaiyi Huo, W. Zhai\",\"doi\":\"10.5702/massspectrometry.S0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral recognition of d- and l-amino acids is achieved by a method combining electrospray ionization (ESI) and in-source collision-induced dissociation (CID) mass spectrometry (MS). Trimeric cluster ions [Cu(II)(A)(ref)2-H](+) are formed by ESI of mixtures of d- or l-analyte amino acid (A), chiral reference (ref) and CuSO4. By increasing the applied voltage in the ESI source region, the trimeric ions become unstable and dissociate progressively. Thus chiral differentiation of the analyte can be achieved by comparing the dependence of their relative intensities to a reference ion on applied voltages. The method does not need MS/MS technique, thus can be readily performed on single-stage MS instruments by turning the voltage of sampling cone.\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"250 1\",\"pages\":\"S0031\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.S0031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.S0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Chiral Differentiation of Amino Acids by In-Source Collision-Induced Dissociation Mass Spectrometry.
Chiral recognition of d- and l-amino acids is achieved by a method combining electrospray ionization (ESI) and in-source collision-induced dissociation (CID) mass spectrometry (MS). Trimeric cluster ions [Cu(II)(A)(ref)2-H](+) are formed by ESI of mixtures of d- or l-analyte amino acid (A), chiral reference (ref) and CuSO4. By increasing the applied voltage in the ESI source region, the trimeric ions become unstable and dissociate progressively. Thus chiral differentiation of the analyte can be achieved by comparing the dependence of their relative intensities to a reference ion on applied voltages. The method does not need MS/MS technique, thus can be readily performed on single-stage MS instruments by turning the voltage of sampling cone.