模拟微钙化簇的合成数据用于训练和解释对比增强乳房x光检查中的深度学习检测模型

A. Van Camp, M. Beuque, L. Cockmartin, H. Woodruff, N. Marshall, M. Lobbes, P. Lambin, H. Bosmans
{"title":"模拟微钙化簇的合成数据用于训练和解释对比增强乳房x光检查中的深度学习检测模型","authors":"A. Van Camp, M. Beuque, L. Cockmartin, H. Woodruff, N. Marshall, M. Lobbes, P. Lambin, H. Bosmans","doi":"10.1117/12.2621195","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models can be trained on contrast-enhanced mammography (CEM) images to detect and classify lesions in the breast. As they often put more emphasis on the masses enhanced in the recombined image, they can fail in recognizing microcalcification clusters since these are hardly enhanced and are mainly visible in the (processed) lowenergy image. Therefore, we developed a method to create synthetic data with simulated microcalcification clusters to be used for data augmentation and explainability studies when training DL models. At first 3-dimensional voxel models of simulated microcalcification clusters based on descriptors of the shape and structure were constructed. In a set of 500 simulated microcalcification clusters the range of the size and of the number of microcalcifications per cluster followed the distribution of real clusters. The insertion of these clusters in real images of non-delineated CEM cases was evaluated by radiologists. The realism score was acceptable for single view applications. Radiologists could more easily categorize synthetic clusters into benign versus malignant than real clusters. In a second phase of the work, the role of synthetic data for training and/or explaining DL models was explored. A Mask R-CNN model was trained with synthetic CEM images containing microcalcification clusters. After a training run of 100 epochs the model was found to overfit on a training set of 192 images. In an evaluation with multiple test sets, it was found that this high level of sensitivity was due to the model being capable of recognizing the image rather than the cluster. Synthetic data could be applied for more tests, such as the impact of particular features in both background and lesion models.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"85 1","pages":"122860U - 122860U-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic data of simulated microcalcification clusters to train and explain deep learning detection models in contrast-enhanced mammography\",\"authors\":\"A. Van Camp, M. Beuque, L. Cockmartin, H. Woodruff, N. Marshall, M. Lobbes, P. Lambin, H. Bosmans\",\"doi\":\"10.1117/12.2621195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) models can be trained on contrast-enhanced mammography (CEM) images to detect and classify lesions in the breast. As they often put more emphasis on the masses enhanced in the recombined image, they can fail in recognizing microcalcification clusters since these are hardly enhanced and are mainly visible in the (processed) lowenergy image. Therefore, we developed a method to create synthetic data with simulated microcalcification clusters to be used for data augmentation and explainability studies when training DL models. At first 3-dimensional voxel models of simulated microcalcification clusters based on descriptors of the shape and structure were constructed. In a set of 500 simulated microcalcification clusters the range of the size and of the number of microcalcifications per cluster followed the distribution of real clusters. The insertion of these clusters in real images of non-delineated CEM cases was evaluated by radiologists. The realism score was acceptable for single view applications. Radiologists could more easily categorize synthetic clusters into benign versus malignant than real clusters. In a second phase of the work, the role of synthetic data for training and/or explaining DL models was explored. A Mask R-CNN model was trained with synthetic CEM images containing microcalcification clusters. After a training run of 100 epochs the model was found to overfit on a training set of 192 images. In an evaluation with multiple test sets, it was found that this high level of sensitivity was due to the model being capable of recognizing the image rather than the cluster. Synthetic data could be applied for more tests, such as the impact of particular features in both background and lesion models.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"85 1\",\"pages\":\"122860U - 122860U-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2621195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2621195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型可以在对比增强乳房x线摄影(CEM)图像上进行训练,以检测和分类乳房中的病变。由于它们往往更强调重组图像中增强的肿块,因此它们可能无法识别微钙化团簇,因为这些团簇几乎没有增强,主要在(处理过的)低能图像中可见。因此,我们开发了一种方法来创建具有模拟微钙化簇的合成数据,用于训练DL模型时的数据增强和可解释性研究。首先基于形状和结构描述符构建模拟微钙化团簇的三维体素模型;在一组500个模拟微钙化簇中,每个簇的大小和微钙化数量的范围遵循真实簇的分布。放射科医生评估了这些簇在未划定的CEM病例的真实图像中的插入。现实主义得分是可以接受的单一视图应用程序。放射科医生可以更容易地将合成的群集分为良性和恶性,而不是真正的群集。在第二阶段的工作中,研究了合成数据在训练和/或解释深度学习模型中的作用。用含有微钙化团簇的合成CEM图像训练Mask R-CNN模型。经过100次的训练后,该模型被发现在192张图像的训练集上过拟合。在多个测试集的评估中,发现这种高水平的灵敏度是由于模型能够识别图像而不是集群。合成数据可以应用于更多的测试,例如背景和病变模型中特定特征的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic data of simulated microcalcification clusters to train and explain deep learning detection models in contrast-enhanced mammography
Deep learning (DL) models can be trained on contrast-enhanced mammography (CEM) images to detect and classify lesions in the breast. As they often put more emphasis on the masses enhanced in the recombined image, they can fail in recognizing microcalcification clusters since these are hardly enhanced and are mainly visible in the (processed) lowenergy image. Therefore, we developed a method to create synthetic data with simulated microcalcification clusters to be used for data augmentation and explainability studies when training DL models. At first 3-dimensional voxel models of simulated microcalcification clusters based on descriptors of the shape and structure were constructed. In a set of 500 simulated microcalcification clusters the range of the size and of the number of microcalcifications per cluster followed the distribution of real clusters. The insertion of these clusters in real images of non-delineated CEM cases was evaluated by radiologists. The realism score was acceptable for single view applications. Radiologists could more easily categorize synthetic clusters into benign versus malignant than real clusters. In a second phase of the work, the role of synthetic data for training and/or explaining DL models was explored. A Mask R-CNN model was trained with synthetic CEM images containing microcalcification clusters. After a training run of 100 epochs the model was found to overfit on a training set of 192 images. In an evaluation with multiple test sets, it was found that this high level of sensitivity was due to the model being capable of recognizing the image rather than the cluster. Synthetic data could be applied for more tests, such as the impact of particular features in both background and lesion models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1