{"title":"ZnO和TiO2在可见光下辅助光催化降解水溶液中的丁草胺","authors":"M. Ahmad, Ghulam Abbas, M. Tanveer, M. Zubair","doi":"10.3390/engproc2021012077","DOIUrl":null,"url":null,"abstract":"Butachlor usage is increasing due to the increasing demand for agricultural products. However, it has toxic effects on surface and underground water. The experiment was conducted under visible light and the effects of parameters such as pH, adsorbent quantity, contact time, and the initial concentration of pesticides were investigated on the degradation of different pesticide solutions. The optimum dosing for ZnO and TiO2 was 0.5 g/L. Degradation by ZnO reached 96.3% and that by TiO2 reached 98.5%. The degradation effect of pH change was also analyzed and found to be higher in the basic region. The COD value was reduced effectively with TiO2. The results showed that TiO2 is more effective for degradation.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ZnO and TiO2 Assisted Photocatalytic Degradation of Butachlor in Aqueous Solution under Visible Light\",\"authors\":\"M. Ahmad, Ghulam Abbas, M. Tanveer, M. Zubair\",\"doi\":\"10.3390/engproc2021012077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Butachlor usage is increasing due to the increasing demand for agricultural products. However, it has toxic effects on surface and underground water. The experiment was conducted under visible light and the effects of parameters such as pH, adsorbent quantity, contact time, and the initial concentration of pesticides were investigated on the degradation of different pesticide solutions. The optimum dosing for ZnO and TiO2 was 0.5 g/L. Degradation by ZnO reached 96.3% and that by TiO2 reached 98.5%. The degradation effect of pH change was also analyzed and found to be higher in the basic region. The COD value was reduced effectively with TiO2. The results showed that TiO2 is more effective for degradation.\",\"PeriodicalId\":11748,\"journal\":{\"name\":\"Engineering Proceedings\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/engproc2021012077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ZnO and TiO2 Assisted Photocatalytic Degradation of Butachlor in Aqueous Solution under Visible Light
Butachlor usage is increasing due to the increasing demand for agricultural products. However, it has toxic effects on surface and underground water. The experiment was conducted under visible light and the effects of parameters such as pH, adsorbent quantity, contact time, and the initial concentration of pesticides were investigated on the degradation of different pesticide solutions. The optimum dosing for ZnO and TiO2 was 0.5 g/L. Degradation by ZnO reached 96.3% and that by TiO2 reached 98.5%. The degradation effect of pH change was also analyzed and found to be higher in the basic region. The COD value was reduced effectively with TiO2. The results showed that TiO2 is more effective for degradation.