{"title":"预测低碳钢在气态氢中疲劳裂纹扩展加速的氢扩散/弹塑性耦合分析","authors":"Kai Kawahara, M. Fujikawa, J. Yamabe","doi":"10.1115/PVP2018-84390","DOIUrl":null,"url":null,"abstract":"In recent years, hydrogen, one of renewable energy, has attracted attention. For widespread commercialization of the hydrogen-energy systems, a useful and reliable evaluation method should be developed for capturing the degradation of strength and fatigue properties of metals in presence of hydrogen. This paper implemented transient hydrogen diffusion-elastoplastic coupling analysis program into a commercial software of Finite Element Analysis (Abaqus) to predict the fatigue crack growth (FCG) acceleration of a low carbon steel (JIS-SM490B) in high-pressure hydrogen gas. For this simulation, hydrogen-diffusion properties (concentration and diffusivity) depending on plastic strain were experimentally obtained. Our thorough numerical results proposed a practical technique to predict an onset of hydrogen-enhanced FCG acceleration measured in experiments, via the numerically obtained gradient of hydrogen concentration at the crack tip. In addition, a practical technique to predict the hydrogen-enhanced FCG acceleration ratio was also discussed based on the gradient of hydrogen concentration.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transient Hydrogen Diffusion/Elastoplastic Coupling Analysis for Predicting Fatigue Crack Growth Acceleration of Low-Carbon Steel in Gaseous Hydrogen\",\"authors\":\"Kai Kawahara, M. Fujikawa, J. Yamabe\",\"doi\":\"10.1115/PVP2018-84390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, hydrogen, one of renewable energy, has attracted attention. For widespread commercialization of the hydrogen-energy systems, a useful and reliable evaluation method should be developed for capturing the degradation of strength and fatigue properties of metals in presence of hydrogen. This paper implemented transient hydrogen diffusion-elastoplastic coupling analysis program into a commercial software of Finite Element Analysis (Abaqus) to predict the fatigue crack growth (FCG) acceleration of a low carbon steel (JIS-SM490B) in high-pressure hydrogen gas. For this simulation, hydrogen-diffusion properties (concentration and diffusivity) depending on plastic strain were experimentally obtained. Our thorough numerical results proposed a practical technique to predict an onset of hydrogen-enhanced FCG acceleration measured in experiments, via the numerically obtained gradient of hydrogen concentration at the crack tip. In addition, a practical technique to predict the hydrogen-enhanced FCG acceleration ratio was also discussed based on the gradient of hydrogen concentration.\",\"PeriodicalId\":23651,\"journal\":{\"name\":\"Volume 6B: Materials and Fabrication\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transient Hydrogen Diffusion/Elastoplastic Coupling Analysis for Predicting Fatigue Crack Growth Acceleration of Low-Carbon Steel in Gaseous Hydrogen
In recent years, hydrogen, one of renewable energy, has attracted attention. For widespread commercialization of the hydrogen-energy systems, a useful and reliable evaluation method should be developed for capturing the degradation of strength and fatigue properties of metals in presence of hydrogen. This paper implemented transient hydrogen diffusion-elastoplastic coupling analysis program into a commercial software of Finite Element Analysis (Abaqus) to predict the fatigue crack growth (FCG) acceleration of a low carbon steel (JIS-SM490B) in high-pressure hydrogen gas. For this simulation, hydrogen-diffusion properties (concentration and diffusivity) depending on plastic strain were experimentally obtained. Our thorough numerical results proposed a practical technique to predict an onset of hydrogen-enhanced FCG acceleration measured in experiments, via the numerically obtained gradient of hydrogen concentration at the crack tip. In addition, a practical technique to predict the hydrogen-enhanced FCG acceleration ratio was also discussed based on the gradient of hydrogen concentration.