主题演讲II:通用电子游戏AI:挑战与应用

S. Lucas
{"title":"主题演讲II:通用电子游戏AI:挑战与应用","authors":"S. Lucas","doi":"10.1109/CIG.2015.7317658","DOIUrl":null,"url":null,"abstract":"Although AI has excelled at many narrowly defined problems, it is still very far from achieving human-like performance in terms of solving problems that it was not specifically programmed for: hence the challenge of artificial general intelligence (AGI) was developed to foster more general AI research. A promising way to address this is to pose the challenge of learning to play video games without knowing any details of the games in advance. In order to study this in a systematic way the General Video Game AI (http://gvgai.net) competition series was created. This provides an excellent challenge for computational intelligence and AI methods and initial results indicate often good though somewhat patchy performance from simulation-based methods such as Monte Carlo Tree Search and Rolling Horizon Evolutionary Algorithms. Observing where these methods succeed and fail leads to the conclusion that there is still much scope for further developing algorithms that mix simulation with long-term learning. While running the competitions we have built up a large set of GVGAI players. This large pool of adaptive players leads on to very appealing potential applications in automated and semi-automated game design where the player-set can be used to evaluate novel games and new parameter settings of existing games. Initial explorations of this idea will be discussed.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"38 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keynote speech II: General video game AI: Challenges and applications\",\"authors\":\"S. Lucas\",\"doi\":\"10.1109/CIG.2015.7317658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although AI has excelled at many narrowly defined problems, it is still very far from achieving human-like performance in terms of solving problems that it was not specifically programmed for: hence the challenge of artificial general intelligence (AGI) was developed to foster more general AI research. A promising way to address this is to pose the challenge of learning to play video games without knowing any details of the games in advance. In order to study this in a systematic way the General Video Game AI (http://gvgai.net) competition series was created. This provides an excellent challenge for computational intelligence and AI methods and initial results indicate often good though somewhat patchy performance from simulation-based methods such as Monte Carlo Tree Search and Rolling Horizon Evolutionary Algorithms. Observing where these methods succeed and fail leads to the conclusion that there is still much scope for further developing algorithms that mix simulation with long-term learning. While running the competitions we have built up a large set of GVGAI players. This large pool of adaptive players leads on to very appealing potential applications in automated and semi-automated game design where the player-set can be used to evaluate novel games and new parameter settings of existing games. Initial explorations of this idea will be discussed.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"38 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2015.7317658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管人工智能在许多狭义的问题上表现出色,但在解决没有专门为其编程的问题方面,它还远未达到类似人类的表现:因此,开发通用人工智能(AGI)的挑战是为了促进更通用的人工智能研究。解决这一问题的一个有效方法是,让玩家在事先不了解任何游戏细节的情况下学习玩电子游戏。为了以一种系统的方式研究这一点,我们创造了General Video Game AI (http://gvgai.net)竞赛系列。这为计算智能和人工智能方法提供了一个极好的挑战,最初的结果表明,基于模拟的方法(如蒙特卡罗树搜索和滚动地平线进化算法)的性能通常很好,尽管有些不完整。通过观察这些方法的成功和失败,我们可以得出结论:将模拟与长期学习相结合的算法仍有很大的发展空间。在举办比赛的过程中,我们已经建立了一大批GVGAI玩家。这一大群自适应玩家将在自动化和半自动化游戏设计中带来非常有吸引力的潜在应用,即玩家集可用于评估新游戏和现有游戏的新参数设置。我们将讨论对这一想法的初步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keynote speech II: General video game AI: Challenges and applications
Although AI has excelled at many narrowly defined problems, it is still very far from achieving human-like performance in terms of solving problems that it was not specifically programmed for: hence the challenge of artificial general intelligence (AGI) was developed to foster more general AI research. A promising way to address this is to pose the challenge of learning to play video games without knowing any details of the games in advance. In order to study this in a systematic way the General Video Game AI (http://gvgai.net) competition series was created. This provides an excellent challenge for computational intelligence and AI methods and initial results indicate often good though somewhat patchy performance from simulation-based methods such as Monte Carlo Tree Search and Rolling Horizon Evolutionary Algorithms. Observing where these methods succeed and fail leads to the conclusion that there is still much scope for further developing algorithms that mix simulation with long-term learning. While running the competitions we have built up a large set of GVGAI players. This large pool of adaptive players leads on to very appealing potential applications in automated and semi-automated game design where the player-set can be used to evaluate novel games and new parameter settings of existing games. Initial explorations of this idea will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1