一种动态协调生成agent计划的新方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2023-02-03 DOI:10.3233/mgs-220304
N. H. Dehimi, Tahar Guerram, Zakaria Tolba
{"title":"一种动态协调生成agent计划的新方法","authors":"N. H. Dehimi, Tahar Guerram, Zakaria Tolba","doi":"10.3233/mgs-220304","DOIUrl":null,"url":null,"abstract":"In this work, we propose a new approach for coordinating generated agents’ plans dynamically. The purpose is to take into consideration new conflicts introduced in new versions of agents’ plans. The approach consists in finding the best combination which contains one plan for each agent among its set of possible plans whose execution does not entail any conflict. This combination of plans is reconstructed dynamically, each time agents decide to change their plans to take into account unpredictable changes in the environment. This not only ensures that new conflicts are likely to be introduced in the new plans that are taken into account but also it allows agents to deal, solely, with the execution of their actions and not with the resolution of conflicts. For this, we use genetic algorithms where the proposed fitness function is defined based on the number of conflicts that agents can experience in each combination of plans. As part of our work, we used a concrete case to illustrate and show the usefulness of our approach.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach for coordinating generated agents' plans dynamically\",\"authors\":\"N. H. Dehimi, Tahar Guerram, Zakaria Tolba\",\"doi\":\"10.3233/mgs-220304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a new approach for coordinating generated agents’ plans dynamically. The purpose is to take into consideration new conflicts introduced in new versions of agents’ plans. The approach consists in finding the best combination which contains one plan for each agent among its set of possible plans whose execution does not entail any conflict. This combination of plans is reconstructed dynamically, each time agents decide to change their plans to take into account unpredictable changes in the environment. This not only ensures that new conflicts are likely to be introduced in the new plans that are taken into account but also it allows agents to deal, solely, with the execution of their actions and not with the resolution of conflicts. For this, we use genetic algorithms where the proposed fitness function is defined based on the number of conflicts that agents can experience in each combination of plans. As part of our work, we used a concrete case to illustrate and show the usefulness of our approach.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgs-220304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-220304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种动态协调生成的智能体计划的新方法。其目的是考虑新版本的代理计划中引入的新冲突。该方法包括在一组可能的计划中为每个代理找到一个计划的最佳组合,这些计划的执行不会带来任何冲突。这种计划组合是动态重建的,每次代理决定改变他们的计划,以考虑到环境中不可预测的变化。这不仅确保在考虑的新计划中可能引入新的冲突,而且还允许代理单独处理其行动的执行,而不是解决冲突。为此,我们使用遗传算法,其中提出的适应度函数是根据代理在每个计划组合中可以经历的冲突数量来定义的。作为我们工作的一部分,我们使用了一个具体的案例来说明和展示我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach for coordinating generated agents' plans dynamically
In this work, we propose a new approach for coordinating generated agents’ plans dynamically. The purpose is to take into consideration new conflicts introduced in new versions of agents’ plans. The approach consists in finding the best combination which contains one plan for each agent among its set of possible plans whose execution does not entail any conflict. This combination of plans is reconstructed dynamically, each time agents decide to change their plans to take into account unpredictable changes in the environment. This not only ensures that new conflicts are likely to be introduced in the new plans that are taken into account but also it allows agents to deal, solely, with the execution of their actions and not with the resolution of conflicts. For this, we use genetic algorithms where the proposed fitness function is defined based on the number of conflicts that agents can experience in each combination of plans. As part of our work, we used a concrete case to illustrate and show the usefulness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1