单侧对准:地球物理测井校正的可解释机器学习方法

Wenting Zhang , Jichen Wang , Kun Li , Haining Liu , Yu Kang , Yuping Wu , Wenjun Lv
{"title":"单侧对准:地球物理测井校正的可解释机器学习方法","authors":"Wenting Zhang ,&nbsp;Jichen Wang ,&nbsp;Kun Li ,&nbsp;Haining Liu ,&nbsp;Yu Kang ,&nbsp;Yuping Wu ,&nbsp;Wenjun Lv","doi":"10.1016/j.aiig.2022.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue, so the trained model cannot well generalize to the unseen data without calibrating the logs. In this paper, we formulated the geophysical logs calibration problem and give its statistical explanation, and then exhibited an interpretable machine learning method, i.e., Unilateral Alignment, which could align the logs from one well to another without losing the physical meanings. The involved UA method is an unsupervised feature domain adaptation method, so it does not rely on any labels from cores. The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"2 ","pages":"Pages 192-201"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544122000065/pdfft?md5=d53965cba548dfab0175d6e81309120d&pid=1-s2.0-S2666544122000065-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Unilateral Alignment: An interpretable machine learning method for geophysical logs calibration\",\"authors\":\"Wenting Zhang ,&nbsp;Jichen Wang ,&nbsp;Kun Li ,&nbsp;Haining Liu ,&nbsp;Yu Kang ,&nbsp;Yuping Wu ,&nbsp;Wenjun Lv\",\"doi\":\"10.1016/j.aiig.2022.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue, so the trained model cannot well generalize to the unseen data without calibrating the logs. In this paper, we formulated the geophysical logs calibration problem and give its statistical explanation, and then exhibited an interpretable machine learning method, i.e., Unilateral Alignment, which could align the logs from one well to another without losing the physical meanings. The involved UA method is an unsupervised feature domain adaptation method, so it does not rely on any labels from cores. The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"2 \",\"pages\":\"Pages 192-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000065/pdfft?md5=d53965cba548dfab0175d6e81309120d&pid=1-s2.0-S2666544122000065-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544122000065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544122000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的测井解释中的机器学习研究大多没有考虑数据分布差异问题,因此在不校准测井数据的情况下,训练出的模型不能很好地泛化到未见数据。本文提出了地球物理测井标定问题,并给出了统计解释,提出了一种可解释的机器学习方法——单侧对准,该方法可以在不丢失物理意义的情况下将测井资料从一口井对准到另一口井。所涉及的UA方法是一种无监督特征域自适应方法,因此它不依赖于任何来自核心的标签。3口井和6个任务的实验从多个角度证明了该方法的有效性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unilateral Alignment: An interpretable machine learning method for geophysical logs calibration

Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue, so the trained model cannot well generalize to the unseen data without calibrating the logs. In this paper, we formulated the geophysical logs calibration problem and give its statistical explanation, and then exhibited an interpretable machine learning method, i.e., Unilateral Alignment, which could align the logs from one well to another without losing the physical meanings. The involved UA method is an unsupervised feature domain adaptation method, so it does not rely on any labels from cores. The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1