Robert Schade , Tobias Kenter , Hossam Elgabarty , Michael Lass , Ole Schütt , Alfio Lazzaro , Hans Pabst , Stephan Mohr , Jürg Hutter , Thomas D. Kühne , Christian Plessl
{"title":"基于电子结构的数亿原子从头算分子动力学模拟","authors":"Robert Schade , Tobias Kenter , Hossam Elgabarty , Michael Lass , Ole Schütt , Alfio Lazzaro , Hans Pabst , Stephan Mohr , Jürg Hutter , Thomas D. Kühne , Christian Plessl","doi":"10.1016/j.parco.2022.102920","DOIUrl":null,"url":null,"abstract":"<div><p>We push the boundaries of electronic structure-based <em>ab-initio</em> molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"111 ","pages":"Article 102920"},"PeriodicalIF":2.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167819122000242/pdfft?md5=cb708fe8c83694714bb33b45ee473a37&pid=1-s2.0-S0167819122000242-main.pdf","citationCount":"12","resultStr":"{\"title\":\"Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms\",\"authors\":\"Robert Schade , Tobias Kenter , Hossam Elgabarty , Michael Lass , Ole Schütt , Alfio Lazzaro , Hans Pabst , Stephan Mohr , Jürg Hutter , Thomas D. Kühne , Christian Plessl\",\"doi\":\"10.1016/j.parco.2022.102920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We push the boundaries of electronic structure-based <em>ab-initio</em> molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"111 \",\"pages\":\"Article 102920\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000242/pdfft?md5=cb708fe8c83694714bb33b45ee473a37&pid=1-s2.0-S0167819122000242-main.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000242\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000242","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Towards electronic structure-based ab-initio molecular dynamics simulations with hundreds of millions of atoms
We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations. The core of our work is the non-orthogonalized local submatrix method (NOLSM), which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16/FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications