M. Storey, L. Hackett, Sara DiGregorio, Michael R. Miller, G. Peake, M. Eichenfield, D. Weinstein
{"title":"铌酸锂异质结构外延ingas的声电表面声波开关","authors":"M. Storey, L. Hackett, Sara DiGregorio, Michael R. Miller, G. Peake, M. Eichenfield, D. Weinstein","doi":"10.1109/Transducers50396.2021.9495622","DOIUrl":null,"url":null,"abstract":"This work presents a 3-Port acoustoelectric switch design for surface acoustic wave signal processing. Using a multistrip coupler, the input acoustic wave at Port 1 is split into two parallel and electrically cross-linked acoustoelectric delay lines where an applied voltage can alter the gain and attenuation in each delay line based on the voltage polarity. The switch is demonstrated using a 270 MHz Leaky SAW mode on an InGaAs on 41° Y-cut lithium niobate heterostructure. Applying a +40 V voltage pulse results in an IL of -12.5 dB and -57.5 dB in the gain and isolation switch paths, respectively. This leads to a 45 dB difference in signal strength at the output ports.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"683 1","pages":"545-548"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Acoustoelectric Surface Acoustic Wave Switch in An Epitaxial Ingaas on Lithium Niobate Heterostructure\",\"authors\":\"M. Storey, L. Hackett, Sara DiGregorio, Michael R. Miller, G. Peake, M. Eichenfield, D. Weinstein\",\"doi\":\"10.1109/Transducers50396.2021.9495622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a 3-Port acoustoelectric switch design for surface acoustic wave signal processing. Using a multistrip coupler, the input acoustic wave at Port 1 is split into two parallel and electrically cross-linked acoustoelectric delay lines where an applied voltage can alter the gain and attenuation in each delay line based on the voltage polarity. The switch is demonstrated using a 270 MHz Leaky SAW mode on an InGaAs on 41° Y-cut lithium niobate heterostructure. Applying a +40 V voltage pulse results in an IL of -12.5 dB and -57.5 dB in the gain and isolation switch paths, respectively. This leads to a 45 dB difference in signal strength at the output ports.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"683 1\",\"pages\":\"545-548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustoelectric Surface Acoustic Wave Switch in An Epitaxial Ingaas on Lithium Niobate Heterostructure
This work presents a 3-Port acoustoelectric switch design for surface acoustic wave signal processing. Using a multistrip coupler, the input acoustic wave at Port 1 is split into two parallel and electrically cross-linked acoustoelectric delay lines where an applied voltage can alter the gain and attenuation in each delay line based on the voltage polarity. The switch is demonstrated using a 270 MHz Leaky SAW mode on an InGaAs on 41° Y-cut lithium niobate heterostructure. Applying a +40 V voltage pulse results in an IL of -12.5 dB and -57.5 dB in the gain and isolation switch paths, respectively. This leads to a 45 dB difference in signal strength at the output ports.