低秩偶阶对称张量估计的互信息

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2020-09-24 DOI:10.1093/imaiai/iaaa022
Clément Luneau, Jean Barbier, N. Macris
{"title":"低秩偶阶对称张量估计的互信息","authors":"Clément Luneau, Jean Barbier, N. Macris","doi":"10.1093/imaiai/iaaa022","DOIUrl":null,"url":null,"abstract":"We consider a statistical model for finite-rank symmetric tensor factorization and prove a singleletter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new nontrivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mutual information for low-rank even-order symmetric tensor estimation\",\"authors\":\"Clément Luneau, Jean Barbier, N. Macris\",\"doi\":\"10.1093/imaiai/iaaa022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a statistical model for finite-rank symmetric tensor factorization and prove a singleletter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new nontrivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaaa022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 14

摘要

考虑有限秩对称张量分解的统计模型,证明了其偶阶张量渐近互信息的单字母变分表达式。证明采用了最初发明的秩一分解自适应插值方法。这里我们展示了如何将自适应插值扩展到有限秩和偶阶张量。这就需要在当前文献分析的基础上提出新的重要观点。我们还强调了在处理奇阶张量时证明不足的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutual information for low-rank even-order symmetric tensor estimation
We consider a statistical model for finite-rank symmetric tensor factorization and prove a singleletter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new nontrivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1