基于启发式的云数据中心软件许可动态整合方法

Leila Helali, Mohamed Nazih Omri
{"title":"基于启发式的云数据中心软件许可动态整合方法","authors":"Leila Helali, Mohamed Nazih Omri","doi":"10.5815/ijisa.2021.06.01","DOIUrl":null,"url":null,"abstract":"Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"225 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic-based Approach for Dynamic Consolidation of Software Licenses in Cloud Data Centers\",\"authors\":\"Leila Helali, Mohamed Nazih Omri\",\"doi\":\"10.5815/ijisa.2021.06.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.\",\"PeriodicalId\":14067,\"journal\":{\"name\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"volume\":\"225 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems and Applications in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijisa.2021.06.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2021.06.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

自出现以来,云计算一直在不断发展,这要归功于它将计算呈现为按使用付费的可消费服务的能力,以及它根据客户需求提供的资源扩展的可能性。通过整合服务进行资源扩展的模型和适当的方案已经进行了相当大的研究,主要是在基础设施级别上优化成本和能源消耗。SaaS级别的整合工作仍然非常有限,尤其是在拥有专有软件的情况下。为了填补这一空白,并在分布式云计算系统的背景下,根据经济和能源意识的考虑,弹性地提供软件许可,本工作涉及商业云数据中心中的动态软件整合𝑺𝑪。我们的解决方案基于启发式算法,并允许在运行时通过确定执行所需的最优资源量和释放未使用的机器来重新分配软件许可证。仿真结果表明,该方案在节能方面节省了68.85%,在成本方面节省了80.01%。它允许释放多达75%的物理机和76.5%的虚拟机,并且在交替改变软件数量和许可证数量的情况下,证明了其在平均执行时间方面的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristic-based Approach for Dynamic Consolidation of Software Licenses in Cloud Data Centers
Since its emergence, cloud computing has continued to evolve thanks to its ability to present computing as consumable services paid by use, and the possibilities of resource scaling that it offers according to client’s needs. Models and appropriate schemes for resource scaling through consolidation service have been considerably investigated,mainly, at the infrastructure level to optimize costs and energy consumption. Consolidation efforts at the SaaS level remain very restrained mostly when proprietary software are in hand. In order to fill this gap and provide software licenses elastically regarding the economic and energy-aware considerations in the context of distributed cloud computing systems, this work deals with dynamic software consolidation in commercial cloud data centers 𝑫𝑺𝟑𝑪. Our solution is based on heuristic algorithms and allows reallocating software licenses at runtime by determining the optimal amount of resources required for their execution and freed unused machines. Simulation results showed the efficiency of our solution in terms of energy by 68.85% savings and costs by 80.01% savings. It allowed to free up to 75% physical machines and 76.5% virtual machines and proved its scalability in terms of average execution time while varying the number of software and the number of licenses alternately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1