角度敏感植入光束角度控制套件

B. Chang, S. Kondratenko, P. K. Hsu, D. Kuo
{"title":"角度敏感植入光束角度控制套件","authors":"B. Chang, S. Kondratenko, P. K. Hsu, D. Kuo","doi":"10.1109/IIT.2014.6940039","DOIUrl":null,"url":null,"abstract":"The unique dual axis tilt design of the gyro-super-disk (GSD) series end stations, as shown in figure 1, allow rapid adjustment of wafer tilt and twist angles and provide high throughput for multi-angle implantations. The treadmill of device scaling has been pushing for tighter process control in all sectors, including implant angle accuracy. Recently, there are rising demands for it to be tightened to <; ±0.2°. The focus of this study is on high energy implantation with the beam angle normal (perpendicular) to the silicon wafer surface, corresponding to major axial crystal channeling. The obtained process results indicate high sensitivity in both device electrical performance and thermal-wave response to the angle variation even when it is within the original system specification of <; ±0.5°. An implant beam angle control (BAC) kit was developed and tested to address the need of more accurate implant angle setup. The BAC kit includes a 2-dimentional beam angle measuring mask mounted on the implant disk, and an add-on software function to control the end station to the desired implant angle with improved accuracy, which is determined from the beam angle measuring mask. Once the beam angle measurement is performed after beam setup, but prior to wafer implant, the true implant angle will be obtained by moving the end-station disk to position. In this study, the BAC kit has been demonstrated with achieved angle accuracy of <; ±0.15° after the angle variation from the beam setup is measured and compensated.","PeriodicalId":6548,"journal":{"name":"2014 20th International Conference on Ion Implantation Technology (IIT)","volume":"40 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Beam angle control kit for angle sensitive implantation\",\"authors\":\"B. Chang, S. Kondratenko, P. K. Hsu, D. Kuo\",\"doi\":\"10.1109/IIT.2014.6940039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique dual axis tilt design of the gyro-super-disk (GSD) series end stations, as shown in figure 1, allow rapid adjustment of wafer tilt and twist angles and provide high throughput for multi-angle implantations. The treadmill of device scaling has been pushing for tighter process control in all sectors, including implant angle accuracy. Recently, there are rising demands for it to be tightened to <; ±0.2°. The focus of this study is on high energy implantation with the beam angle normal (perpendicular) to the silicon wafer surface, corresponding to major axial crystal channeling. The obtained process results indicate high sensitivity in both device electrical performance and thermal-wave response to the angle variation even when it is within the original system specification of <; ±0.5°. An implant beam angle control (BAC) kit was developed and tested to address the need of more accurate implant angle setup. The BAC kit includes a 2-dimentional beam angle measuring mask mounted on the implant disk, and an add-on software function to control the end station to the desired implant angle with improved accuracy, which is determined from the beam angle measuring mask. Once the beam angle measurement is performed after beam setup, but prior to wafer implant, the true implant angle will be obtained by moving the end-station disk to position. In this study, the BAC kit has been demonstrated with achieved angle accuracy of <; ±0.15° after the angle variation from the beam setup is measured and compensated.\",\"PeriodicalId\":6548,\"journal\":{\"name\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"volume\":\"40 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 20th International Conference on Ion Implantation Technology (IIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIT.2014.6940039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 20th International Conference on Ion Implantation Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2014.6940039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

GSD系列端台采用独特的双轴倾斜设计,如图1所示,可以快速调整晶圆倾斜和扭转角度,为多角度植入提供高通量。设备缩放的跑步机一直在推动所有部门更严格的过程控制,包括植入物角度精度。最近,越来越多的人要求将其收紧到<;±0.2°。本文研究的重点是光束角垂直于硅片表面的高能注入,对应于主要的轴向晶体通道。所获得的工艺结果表明,即使在原始系统规格<;±0.5°。开发并测试了一种种植体光束角度控制(BAC)试剂盒,以满足更精确的种植体角度设置的需求。BAC套件包括一个安装在植入盘上的二维光束角测量掩膜,以及一个附加的软件功能,用于控制端站到所需的植入角度,并提高精度,这是由光束角测量掩膜确定的。一旦在光束设置后,但在晶圆植入之前进行光束角度测量,将通过移动端站盘到位置来获得真实的植入角度。在本研究中,BAC试剂盒已被证明具有<;在测量和补偿光束设置的角度变化后±0.15°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beam angle control kit for angle sensitive implantation
The unique dual axis tilt design of the gyro-super-disk (GSD) series end stations, as shown in figure 1, allow rapid adjustment of wafer tilt and twist angles and provide high throughput for multi-angle implantations. The treadmill of device scaling has been pushing for tighter process control in all sectors, including implant angle accuracy. Recently, there are rising demands for it to be tightened to <; ±0.2°. The focus of this study is on high energy implantation with the beam angle normal (perpendicular) to the silicon wafer surface, corresponding to major axial crystal channeling. The obtained process results indicate high sensitivity in both device electrical performance and thermal-wave response to the angle variation even when it is within the original system specification of <; ±0.5°. An implant beam angle control (BAC) kit was developed and tested to address the need of more accurate implant angle setup. The BAC kit includes a 2-dimentional beam angle measuring mask mounted on the implant disk, and an add-on software function to control the end station to the desired implant angle with improved accuracy, which is determined from the beam angle measuring mask. Once the beam angle measurement is performed after beam setup, but prior to wafer implant, the true implant angle will be obtained by moving the end-station disk to position. In this study, the BAC kit has been demonstrated with achieved angle accuracy of <; ±0.15° after the angle variation from the beam setup is measured and compensated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increase of sp3 content in a-C films with gas cluster ion beam bombardments; XPS and NEXAFS study NMOS source-drain extension ion implantation into heated substrates Activation of low-dose Si+ implant into In0.53Ga0.47As with Al+ and P+ co-implants The features of cold boron implantation in silicon Plasma Doping optimizing knock-on effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1