基于加权i向量的文本无关说话人验证系统

Mohsen Mohammadi, H. R. Sadegh Mohammadi
{"title":"基于加权i向量的文本无关说话人验证系统","authors":"Mohsen Mohammadi, H. R. Sadegh Mohammadi","doi":"10.1109/IranianCEE.2019.8786420","DOIUrl":null,"url":null,"abstract":"Speaker recognition is one of the most common and user-friendly methods for biological signals based people identification. Nowadays, Speaker verification based on factor analysis and i-vector space has a great impact on the performance improvement of these systems. In this paper, a method is proposed for weighting the model and test vectors, which utilizes the statistical characteristics of target training vectors. The effect of the use of weighted vectors on the accuracy of scoring and the performance of the entire speaker verification system was evaluated for Mel-frequency cepstral coefficients (MFCC) and power-normalized cepstral coefficients (PNCC) feature vectors, and two scoring methods, i.e., the cosine distance and probabilistic linear discriminant analysis (PLDA). TIMIT database has been used in the evaluation of the system. The test results indicate that the use of proposed weighted vectors reduces the error rate of the speaker verification system significantly.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"2 1","pages":"1647-1653"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted I-Vector Based Text-Independent Speaker Verification System\",\"authors\":\"Mohsen Mohammadi, H. R. Sadegh Mohammadi\",\"doi\":\"10.1109/IranianCEE.2019.8786420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker recognition is one of the most common and user-friendly methods for biological signals based people identification. Nowadays, Speaker verification based on factor analysis and i-vector space has a great impact on the performance improvement of these systems. In this paper, a method is proposed for weighting the model and test vectors, which utilizes the statistical characteristics of target training vectors. The effect of the use of weighted vectors on the accuracy of scoring and the performance of the entire speaker verification system was evaluated for Mel-frequency cepstral coefficients (MFCC) and power-normalized cepstral coefficients (PNCC) feature vectors, and two scoring methods, i.e., the cosine distance and probabilistic linear discriminant analysis (PLDA). TIMIT database has been used in the evaluation of the system. The test results indicate that the use of proposed weighted vectors reduces the error rate of the speaker verification system significantly.\",\"PeriodicalId\":6683,\"journal\":{\"name\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"2 1\",\"pages\":\"1647-1653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IranianCEE.2019.8786420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

说话人识别是基于生物信号的人物识别中最常用、最友好的方法之一。目前,基于因子分析和i-向量空间的说话人验证对这些系统的性能提升有很大影响。本文提出了一种利用目标训练向量的统计特性对模型和测试向量进行加权的方法。针对Mel-frequency倒谱系数(MFCC)和功率归一化倒谱系数(PNCC)特征向量,以及余弦距离和概率线性判别分析(PLDA)两种评分方法,评估了加权向量的使用对评分精度和整个说话人验证系统性能的影响。该系统的评价使用了TIMIT数据库。实验结果表明,所提出的加权向量显著降低了说话人验证系统的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted I-Vector Based Text-Independent Speaker Verification System
Speaker recognition is one of the most common and user-friendly methods for biological signals based people identification. Nowadays, Speaker verification based on factor analysis and i-vector space has a great impact on the performance improvement of these systems. In this paper, a method is proposed for weighting the model and test vectors, which utilizes the statistical characteristics of target training vectors. The effect of the use of weighted vectors on the accuracy of scoring and the performance of the entire speaker verification system was evaluated for Mel-frequency cepstral coefficients (MFCC) and power-normalized cepstral coefficients (PNCC) feature vectors, and two scoring methods, i.e., the cosine distance and probabilistic linear discriminant analysis (PLDA). TIMIT database has been used in the evaluation of the system. The test results indicate that the use of proposed weighted vectors reduces the error rate of the speaker verification system significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Graphene Nanoribbon based Resonant Tunneling Diodes using BN Quantum Well A Modified McEliece Public-Key Cryptosystem Based On Irregular Codes Of QC-LDPC and QC-MDPC A 6-bit 100-MS/s Fully-Digital Time-Based Analog-to-Digital Converter Direct Torque and Flux Control of Dual Stator Winding Induction Motor Drives based on Emotional Controller Measurement Time Reduction in Compliance Assessment of Electromagnetic Field Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1