确定桁架稳定性的图解法

A. McRobie, Cameron Millar, W. Baker
{"title":"确定桁架稳定性的图解法","authors":"A. McRobie, Cameron Millar, W. Baker","doi":"10.20898/J.IASS.2020.011","DOIUrl":null,"url":null,"abstract":"Graphic statics has been used for over 150 years, having been pioneered by the likes of Maxwell, Cremona, Culmann and Rankine, and has recently seen a resurgence in popularity because of its use in design. However, it is only concerned with equilibrium; as any engineer will testify,\n whilst equilibrium is necessary, it is not sufficient and stability must also be obtained. This paper develops a novel graphical method for determining the stability and stiffness of prestressable structures. By considering the weighted sum of the Maxwell-Minkowski diagram, the stiffness and\n stability of the structural mechanisms can be determined. This work extends to cover structures with multiple mechanisms and has been compared to results obtained through experimentation and the finite element method. Furthermore, it extends the work on stiffness to provide a graphical method\n to estimate the natural frequency of a truss. Whilst this method accurately determines the stiffness of structures, it represents a significant development in the field of graphic statics as it allows an engineer to 'eye-ball' the stability of a given truss. Engineers can also manipulate the\n form and force diagrams, as desired, to adjust the stiffness of their structure accordingly, whilst being able to visualise the process. Much of the previous work in this area relies heavily upon large matrices, while this method allows a more intimate and hands-on alternative.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Graphical Method for Determining Truss Stability\",\"authors\":\"A. McRobie, Cameron Millar, W. Baker\",\"doi\":\"10.20898/J.IASS.2020.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphic statics has been used for over 150 years, having been pioneered by the likes of Maxwell, Cremona, Culmann and Rankine, and has recently seen a resurgence in popularity because of its use in design. However, it is only concerned with equilibrium; as any engineer will testify,\\n whilst equilibrium is necessary, it is not sufficient and stability must also be obtained. This paper develops a novel graphical method for determining the stability and stiffness of prestressable structures. By considering the weighted sum of the Maxwell-Minkowski diagram, the stiffness and\\n stability of the structural mechanisms can be determined. This work extends to cover structures with multiple mechanisms and has been compared to results obtained through experimentation and the finite element method. Furthermore, it extends the work on stiffness to provide a graphical method\\n to estimate the natural frequency of a truss. Whilst this method accurately determines the stiffness of structures, it represents a significant development in the field of graphic statics as it allows an engineer to 'eye-ball' the stability of a given truss. Engineers can also manipulate the\\n form and force diagrams, as desired, to adjust the stiffness of their structure accordingly, whilst being able to visualise the process. Much of the previous work in this area relies heavily upon large matrices, while this method allows a more intimate and hands-on alternative.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/J.IASS.2020.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/J.IASS.2020.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 5

摘要

图形静力学已经使用了150多年,由麦克斯韦、克雷莫纳、卡尔曼和兰金等人开创,最近由于在设计中的使用而重新流行起来。然而,它只与平衡有关;正如任何工程师都会证明的那样,虽然平衡是必要的,但它是不够的,还必须获得稳定性。本文提出了一种新的确定预应力结构稳定性和刚度的图解方法。通过考虑麦克斯韦-闵可夫斯基图的加权和,可以确定结构机构的刚度和稳定性。这项工作扩展到涵盖多种机构的结构,并与通过实验和有限元方法获得的结果进行了比较。此外,它扩展了刚度的工作,提供了一种估计桁架固有频率的图形方法。虽然这种方法可以准确地确定结构的刚度,但它代表了图形静力学领域的重大发展,因为它允许工程师“注视”给定桁架的稳定性。工程师还可以根据需要操纵形状和受力图,以相应地调整结构的刚度,同时能够可视化整个过程。该领域以前的许多工作严重依赖于大型矩阵,而这种方法允许更亲密和动手的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Graphical Method for Determining Truss Stability
Graphic statics has been used for over 150 years, having been pioneered by the likes of Maxwell, Cremona, Culmann and Rankine, and has recently seen a resurgence in popularity because of its use in design. However, it is only concerned with equilibrium; as any engineer will testify, whilst equilibrium is necessary, it is not sufficient and stability must also be obtained. This paper develops a novel graphical method for determining the stability and stiffness of prestressable structures. By considering the weighted sum of the Maxwell-Minkowski diagram, the stiffness and stability of the structural mechanisms can be determined. This work extends to cover structures with multiple mechanisms and has been compared to results obtained through experimentation and the finite element method. Furthermore, it extends the work on stiffness to provide a graphical method to estimate the natural frequency of a truss. Whilst this method accurately determines the stiffness of structures, it represents a significant development in the field of graphic statics as it allows an engineer to 'eye-ball' the stability of a given truss. Engineers can also manipulate the form and force diagrams, as desired, to adjust the stiffness of their structure accordingly, whilst being able to visualise the process. Much of the previous work in this area relies heavily upon large matrices, while this method allows a more intimate and hands-on alternative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
期刊最新文献
Membrane Solution for a Paraboloid under Self-Weight An Initial-Morphogenesis Technique of Free-Form Shell Roofing Based on a Fourier Transform Seismic Design of Sports Arena for Tokyo Olympic 2020 Using Energy-Dissipation Devices Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints The Gridshells for the San Francisco Salesforce Transit Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1